Ibis Creek Dam

EMERGENCY ACTION PLAN
PREPARATION AND AUTHORISATION

This Emergency Action Plan was prepared by the Mareeba Shire Council in liaison with the Local Disaster Management Group.

Approval:

_________________________ Date: 20 / 9 / 2019
Chief Executive Officer, Mareeba Shire Council
DOCUMENT CONTROL SHEET

CONTROLLED COPY NUMBER: 16

AUTHORISATION:

Approved by: ..

(Chief Executive Officer Mareeba Shire Council)

Date: ………... / ………... / ………...2019

DOCUMENT REVISION HISTORY

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Officer Name</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>September 2013</td>
<td></td>
<td>Re-written with new DNRME requirements.</td>
</tr>
<tr>
<td>2</td>
<td>September 2014</td>
<td></td>
<td>PAR contact list revised, ownership details changed & document reformatted.</td>
</tr>
<tr>
<td>3</td>
<td>September 2015</td>
<td></td>
<td>Ch2 Table updated, Ch3 text additions, Ch9 Table updated, changes to A5 & A10, and reformatted.</td>
</tr>
<tr>
<td>4</td>
<td>August 2017</td>
<td></td>
<td>Re-written to include instrumentation updates, comply with legislative changes (taking effect 1Jul2017), and changes requested from MSC and DDMG.</td>
</tr>
<tr>
<td>5</td>
<td>September 2019</td>
<td></td>
<td>Chapter 2 Table 1 Control Copy & Notification List amended; Appendices 5, 8 & 10 amended; changed DEWS to DNRME; additions to Table 2; and minor editing to document.</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1. Introduction .. 1-1
2. Control Copy and Notification List .. 2-1
3. Emergency Events and Actions ... 3-1
 3.1 Flooding .. 3-1
 3.1.1 Detailed actions .. 3-3
 3.1.2 Preventative actions for Flooding Events ... 3-4
 3.2 Embankment Stability Issues ... 3-5
 3.2.1 Detailed Actions .. 3-5
 3.2.2 Preventative actions for Embankment Stability Issues ... 3-7
 3.3 Seepage Events ... 3-7
 3.3.1 Detailed Actions .. 3-8
 3.3.2 Preventative actions for Seepage Events ... 3-9
 3.4 Other Dam Safety Events ... 3-9
 3.4.1 Detailed Actions for Toxic Spills .. 3-10
 3.4.2 Preventative actions for Other Dam Safety Events .. 3-11
4. Roles and Responsibilities ... 4-1
 4.1 EAP Officer ... 4-1
 4.2 EAP Backup 1 and 2 ... 4-1
 4.3 Manager Water and Waste .. 4-1
 4.4 Local disaster coordinator .. 4-2
 4.5 Queensland Police Communication Centre, Cairns .. 4-2
 4.6 Queensland Police, Herberton .. 4-2
 4.7 Mareeba Local Disaster Management Group (LDMG) ... 4-2
5. Evacuation Procedure ... 5-1
 5.1 General ... 5-1
 5.2 Early Warning ... 5-1
 5.3 Evacuation Warning ... 5-1
 5.4 Situation Monitoring .. 5-1
 5.5 End of Event .. 5-1
 5.6 Individual Evacuation Plans ... 5-1
6. Predicted Flood Levels and Flood Travel Times ... 6-1
 6.1 Predicted Depth of Flooding ... 6-1
 6.2 Flood Wave Travel Times .. 6-1
7. Communications .. 7-1
8. Storage Log Book ... 8-1
9. Dam Details ... 9-1
 9.1 Dam Details ... 9-1
 9.2 Flood handling capability .. 9-3
 9.3 Potential Problem Identification .. 9-3
10. Emergency Event Report ... 10-1
11. Revision of Evacuation Plans ... 11-1
12. References ... 12-1

TABLES

Table 1: Control Copy and Notification List ... 2-1
Table 2: Procedures to follow when flooding occurs ... 3-1
Table 3: Procedures to follow if embankment stability issues occur 3-5
Table 4: Procedures to follow if abnormal seepage occurs .. 3-7
Table 5: Procedures to follow if other abnormal issues occur .. 3-9
Table 6: Procedures to follow if other abnormal issues occur .. 6-1
Table 7: Travel time to first house .. 6-1
Table 8: Details of Ibis Dam .. 9-1

APPENDICES

APPENDIX 1 LOCALITY PLAN
APPENDIX 2 CATCHMENT BOUNDARY
LIST OF ABBREVIATIONS USED IN THIS TEXT

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEP</td>
<td>Annual Exceedance Probability</td>
</tr>
<tr>
<td>AFC</td>
<td>Acceptable Flood Capacity</td>
</tr>
<tr>
<td>AHD</td>
<td>Australian Height Datum (shown in text as mAHD - metres AHD)</td>
</tr>
<tr>
<td>AMTD</td>
<td>Adopted Middle Thread Distance</td>
</tr>
<tr>
<td>DNRME</td>
<td>Department of Natural Resources Mines and Energy</td>
</tr>
<tr>
<td>DN</td>
<td>Diameter Nominal</td>
</tr>
<tr>
<td>DSR</td>
<td>Dam Safety Regulator</td>
</tr>
<tr>
<td>EAP</td>
<td>Emergency Action Plan</td>
</tr>
<tr>
<td>EL</td>
<td>Elevation Level</td>
</tr>
<tr>
<td>FIA</td>
<td>Failure Impact Assessment</td>
</tr>
<tr>
<td>FSL</td>
<td>Full supply level is the level of the water surface of the dam when the water storage is at maximum operating level when not affected by flood</td>
</tr>
<tr>
<td>GDA</td>
<td>Geocentric Datum of Australia</td>
</tr>
<tr>
<td>HMI</td>
<td>Human Machine Interface</td>
</tr>
<tr>
<td>LDC</td>
<td>Local Disaster Coordinator (MSC CEO)</td>
</tr>
<tr>
<td>LDMG</td>
<td>Local Disaster Management Group</td>
</tr>
<tr>
<td>MSC</td>
<td>Mareeba Shire Council</td>
</tr>
<tr>
<td>MSC CEO</td>
<td>Mareeba Shire Council Chief Executive Officer</td>
</tr>
<tr>
<td>MWW</td>
<td>Manager Water & Waste</td>
</tr>
<tr>
<td>PAR</td>
<td>Population at Risk</td>
</tr>
<tr>
<td>PMF</td>
<td>Probable Maximum Flood</td>
</tr>
<tr>
<td>PMP</td>
<td>Probable Maximum Precipitation</td>
</tr>
<tr>
<td>QPS</td>
<td>Queensland Police Service</td>
</tr>
<tr>
<td>RPEQ</td>
<td>Registered Professional Engineer of QLD</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedures</td>
</tr>
<tr>
<td>SWO</td>
<td>Supervisor Water Operations</td>
</tr>
</tbody>
</table>
1. **INTRODUCTION**

Ibis Creek Dam was originally constructed, as a concrete-faced rock-fill dam, in 1907. The dam has undergone two rebuild/refurbishments since that time, with the most recently completed in 2013. It is located on the Ibis Creek 2.5 kilometres upstream of the township of Irvinebank. The dam is approximately 82 kilometres south-west of Cairns.

The dam is owned and operated by the Mareeba Shire Council. Non-potable water is supplied, under agreement, to the townspeople for their use. A 1.4 kilometre pipeline runs north-west from the dam to supply two reservoirs located on a ridge above the town. Supply is then gravity fed to each property within Irvinebank.

Stage 3 upgrade of the dam was completed in June 2013 and the dam now has capacity to handle a 1:100,000 AEP event; which is the Acceptable Flood Capacity (AFC) for the dam. The largest known floods to have passed over the Dam were due to rainfall associated with cyclone Larry in 2006 and cyclone Tasha Christmas Day 2010. These events were approximately 7% of AFC.

Up to 75 people could be inundated if there is a Sunny Day Failure (at FSL), Dam Crest Flood or Probable Maximum Flood Failure of the Dam (refer FIA, SunWater, May 2008). This figure was verified by a later report (refer to Comprehensive Surveillance Report, AURECON 2016).

In the event of dam failure, as little as 5 minutes would be available to warn the people of Irvinebank.

The Ibis Dam scenario has the following characteristics:

- The steep terrain and short distance between Ibis Dam and Irvinebank result in short travel times for any failure event at Ibis Dam;
- The downstream limit of people who would be flooded is contained within Irvinebank;
- The town will be fragmented into four sections when flooded;
- The Herberton-Irvinebank Road is impassable during high rainfall events due to local flooding of creeks;
- There is no mobile coverage;
- Satellite phone communications have proven unreliable during wet weather events;
- Communications have been established at the Dam wall, Mt Orman, Repeater Station and Museum with an installed voice radio/speaker system which uses data radios (using NextG system);
- Verbal communication across McDonald Creek is impossible during flood events due to the noise of the running water; and
- Some of the population at risk are elderly and frail.

This Emergency Action Plan outlines the necessary actions by Council, Queensland Police, the Local Disaster Management Group (LDMG) and affected persons in the event of an emergency condition or potential emergency condition associated with Ibis Dam.

Section 2 has been redacted
3. **EMERGENCY EVENTS AND ACTIONS**

The maximum storage height on record is EL 826.1 mAHD which was reached in March 2006 due to cyclone Larry, and cyclone Tasha on Christmas Day 2010. The maximum depth of water over the deck of McDonald Creek Bridge, at the bottom of Jessie Street, was reported as 850 mm for the same events (Deck level – EL 742.92 mAHD). Any overflow events that do not reach these levels are regarded as small to medium events. The procedures to be followed for these events are outlined in Standing Operating Procedures for Small to Medium Spillway Overflows (SOP 14). A copy of this procedure is included as APPENDIX 7 – STANDING OPERATING PROCEDURE FOR SPILLWAY OVERFLOWS.

The following events are defined as emergency events:

- Flooding Event – Reservoir level approaching EL 826 mAHD and heavy rainfall continuing in the catchment;
- Embankment Stability Events – Sunny Day Failure or Structural Damage to Dam or Earthquake, Explosion, Tremor or Landslide into the storage;
- Seepage Events – increase in seepage, not due to storage rise, and/or additional cracking or increased crack widths in dam wall; and
- Other Events – Flow slide, landslide, structural cracking, abnormal instrument readings and chemical/toxic spill within storage/catchment.

The activation and alert levels are listed for these events as well as the actions that are to be undertaken by relevant officers.

The Dam is likely to be difficult to get to by road after heavy rainfall due to local runoff and slippery roads. The Emergency Action Plan (EAP) Officer and other on-call Council officers can monitor water levels and rainfall at the dam by remote access through the SCADA2 system. During a heavy rainfall event the height gauge at the dam and the rainfall should be monitored at one-hour intervals until the storage height approaches EL 826.0 mAHD. The monitoring frequency should be increased to half hourly intervals if the storage height increases. The SCADA instrumentation readings are permanently recorded within Council’s Historian.

3.1 FLOODING

Table 2: Procedures to follow when flooding occurs

<table>
<thead>
<tr>
<th>Activation</th>
<th>General Characteristics</th>
<th>When and what to check</th>
<th>What needs to be done and by whom</th>
</tr>
</thead>
</table>
| Alert | Storage full, heavy rainfall expected/continuing and water level rising | Before overtopping:
- Visual inspection of dam for deficiencies, and
- Measure seepages from internal drains.
After Overtopping | EAP Officer will
- Visual inspection of dam and measurement of seepages; |

2 SCADA: Supervisory Control and Data Acquisition. SCADA generally refers to an industrial computer system that monitors and controls a process. In this situation the SCADA system monitors and records (within the MSC Historian - computer system, which is backed up and has an alternate power supply if required): rainfall (at the dam wall and on top of Mt Orman); dam water height; flow over the v-notch weir at the foot of the dam wall; and the siren system within the township of Irvinebank. Should there be a fault in any of the system or an emergency event the SCADA system is programmed to notify selected persons as required.
<table>
<thead>
<tr>
<th>Activation</th>
<th>General Characteristics</th>
<th>When and what to check</th>
<th>What needs to be done and by whom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Continue monitoring storage height and rainfall.</td>
<td>• Monitor storage height and rainfall at hourly intervals; and • Notify LDC and MWW.</td>
</tr>
<tr>
<td>Lean Forward</td>
<td>Spillway discharging, heavy rainfall expected/continuing and water level approaching 826.0 mAHD</td>
<td>Storage height and rainfall.</td>
<td>EAP Officer will • Continue monitoring and reporting as per SOP 14.</td>
</tr>
<tr>
<td>Stand-up</td>
<td>Water level greater than 826.0 mAHD, heavy rainfall expected/continuing, and water level expected to rise further</td>
<td>Storage height and rainfall. Visual inspection of dam for deficiencies.</td>
<td>EAP Officer will • Continue monitoring and reporting storage height and rainfall; • Carry out early warning process; • Notify LDC, MWW; and • Turn sirens off. EAP Backup Officers to inspect dam and report to EAP Officer. MWW will: • review the reports; • assess if evacuation is required; and • If so, then notify the CEO who will notify the LDC, QPS and the DSR.</td>
</tr>
<tr>
<td></td>
<td>Water level approaching 827.5 mAHD</td>
<td>Storage height and rainfall.</td>
<td>EAP Officer is to advise MWW, LDC and QPS that flooding of houses will start when water level reaches 827.5 mAHD and recommend evacuation.</td>
</tr>
<tr>
<td></td>
<td>Overtopping imminent or high risk of failure initiating</td>
<td>Visual inspection of dam for deficiencies.</td>
<td>As above</td>
</tr>
<tr>
<td>Stand-down</td>
<td>Lake levels dropping to FSL</td>
<td>Prepare Emergency Event Report. Check for damage and undertake special inspection and remedial works as necessary.</td>
<td>EAP Backup Officers to inspect dam. EAP Officer: • Notify LDC, MWW and QPS that Lake level is dropping; • Notify residents that event is over; and • Prepare report on event for MWW.</td>
</tr>
</tbody>
</table>
3.1.1 Detailed actions

The EAP Officer will:

- Monitor the dam instrumentation and BoM website for potential events;
- Visually inspect dam before overtopping; and
- Act in accordance with SOP 14 for small to medium spillway overflows.

When the water level reaches 826.0 mAHD, heavy rainfall is expected and/or continuing and further water level rise is predicted, the EAP Officer shall:

- Mobilise EAP Officers Backup 1 and 2;
- Carry out the Early Warning Process (see Section 5.2);
- Deactivate the automatic sirens: because the downstream trigger is set at 1.5 m over the V-Notch and increased flows are likely to exceed this trigger;
- Read storage height gauge, rain gauge and depth of water over the deck of the bridge at bottom of Jessie Street at half-hour intervals;
- Notify the Manager Water and Waste (MWW) of the storage height gauge, rainfall, rate of rise of the storage, and the depth of water over the deck of the bridge;
- Update MWW every half-hour during the event.
- On authorisation from MWW, notify the evacuated people that the Emergency Event is at an end;
- Revert to Standing Operating Procedures for Small to Medium Spillway Overflows (SOP 14); and
- Compile an Emergency Event Report and forward to MWW.

After the event:

- With the assistance of the EAP Backup Officers, make an inspection of the dam and report findings to the MWW;
- If the dam is considered safe, advise the MWW that the emergency event is at an end;
- If not, advise the Local Disaster Coordinator (LDC) that the evacuation will continue until the dam can be made safe; and
- Notify the LDC and MWW that the Emergency Event has ended.

The MWW will:

- Notify the LDC and the DNRME hotline\(^3\) that a significant flood is in progress, and maintain contact as the situation demands (or as mutually agreed between each officer);
- Review the reports from the EAP Officer and determine if evacuation is required. If water level is approaching 827.5 mAHD, then evacuation is recommended;
- Notify the LDC that evacuation plan has been activated;
- Provide regular (at a mutually agreed interval to be determined between each officer) updates to the LDC; and
- Provide a report to Director, Dam Safety within 30 days of the event.

This Event ends when the preceding two-hour rainfall is less than 50 mm and the storage height gauge is less than EL826.0 mAHD and falling.

\(^3\) DEWS - 24 hour contact telephone number (as per \textit{Control Copy and Notification List})
The LDC will:

- Coordinate the response and implement the local disaster management plans as required;
- Notify the Police Communications Centre, Cairns if an evacuation is required; and
- Notify the Police Communications Centre, Cairns and the Emergency Queensland Watch Desk Officer that the Emergency Event has ended.

3.1.2 Preventative actions for Flooding Events:

- Public awareness of the siren system and what action should be taken if it is activated;
- Public awareness of the evacuation plan;
- Provide early warning to the population at risk;
- Monitor BoM weather radar and storage height gauge; and
- EAP training and Scenario Event exercises annually.
3.2 EMBANKMENT STABILITY ISSUES

Characteristics:
- Signs of distress in embankment such as cracking or deformation/sliding;
- Abnormal instrumentation readings; and
- Earthquakes and Sunny Day Failures.

Table 3: Procedures to follow if embankment stability issues occur

<table>
<thead>
<tr>
<th>Activation</th>
<th>General Characteristics</th>
<th>When and what to check</th>
<th>What needs to be done and by whom</th>
</tr>
</thead>
</table>
| Alert | Identification during routine inspection of initial signs of embankment distress such as cracks. | Inspect affected area of embankment to watch for signs of cracking progressing. Undertake remedial action if practical. | • EAP Officer to inspect and monitor.
• Notify LDC of incident and maintain communications.
• MWW to authorise remedial action if practical. |
| Lean Forward | Cracking becoming significant to the point where stability may be starting to be impaired. | Continue monitoring. Upgrade efforts at remedial works or load reduction if practical. | As above |
| Stand-up | Loads on embankment increasing or cracking/ deformation increasing to state where the safety of the dam is significantly impaired. | Upgrade efforts at remedial works or the reductions of embankment loads if practical. Continue monitoring of dam. Issue notifications as required. | As above, plus:
• Lower water level – MWW and EAP Officer; and
• Maintain communications with LDC. |
| Stand-down | Remedial works completed and risk of failure drops significantly. | Prepare Emergency Event Report. Remedial works are undertaken to significantly mitigate risk. | • MWW to authorise remedial action.
• MWW to brief LDC. |

3.2.1 Detailed Actions
The most likely event that may cause a Sunny Day Failure is an earth tremor or landslide into the dam.

If the there is a Sunny Day Failure, the depth of water over the v-notch will trigger the sirens in Irvinebank to automatically activate and send automated alerts to the MWW, LDC and Supervisor Water Operations (SWO).

The EAP Officer will:
- Notify LDC of event;
- Turn the sirens off after people have evacuated;
- Mobilise EAP Officers Backup 1 and 2 and send them to check the dam;
- Read the storage height gauge and downstream height gauge at five-minute intervals for 15 minutes;
- Report readings and results of inspection to MWW;
EMERGENCY ACTION PLAN
Ibis Creek Dam

- Open the valves\(^4\) (if safe to do so); and
- Monitor the dam as directed by the MWW.

If the EAP Officer notices an explosion or earth tremor of II or more on the Modified Mercalli Scale\(^5\) (that is, felt by most indoors, similar to the passing of a light truck) or becomes aware of structural damage to the dam, he must:
 - Manually activate the sirens in Irvinebank;
 - Notify the MWW that the evacuation process has been activated;
 - Turn the sirens off after people have evacuated;
 - Mobilise EAP Officers Backup 1&2 and send them to check the dam;
 - Read the storage height gauge and downstream height gauge at five-minute intervals for 15 minutes; and
 - Report readings and results of inspection to MWW.

The MWW will:
 - Review the readings and results of inspection.

If the dam is not considered to be safe:

The MWW will:
 - Notify the LDC (Mareeba LDMG) and the DNRME hotline that the evacuation plan has been activated and will continue until the Council can be certain that the dam is safe;
 - Direct the EAP Officer to release water from the dam by fully opening both outlet valves (if safe to do so); and
 - Arrange for inspection of the dam by an RPEQ Engineer as soon as possible.

The LDC will:
 - Notify the Police Communications Centre, Cairns (000) that an evacuation is required; and
 - Coordinate the response and implement the local disaster management plans as required.

If the dam is considered safe:

The EAP Officer will:
 - Notify the evacuated people that the Emergency Event is at an end; and
 - Compile an Emergency Event Report and forward to MWW.

The MWW will:
 - Notify the LDC that the evacuation plan had been activated, but has been cancelled because a review of the inspection indicated that the dam is now considered to be safe;
 - Advise the EAP Officer that the emergency event is at an end; and

\(^4\) When the dam is overflowing it is not possible to access the outlet valves. Therefore the valves will only be accessible when the creek is not running water. There is a floating intake within the dam connected via a ND125 polyethylene pipe attached to two outlet valves (DN250 & DN300) on the spillway. The estimated maximum outflow rate, when the dam is full but not overflowing, is less than 50 L/s. The flow at the McDonald Creek Bridge (once it reaches the bridge) should be monitored periodically to observe the water level.

\(^5\) For more information regarding the Modified Mercalli Scale refer to: https://earthquake.usgs.gov/learn/topics/mercalli.php
• Provide a report to Director, Dam Safety within 30 days of the event.

The LDC will:
• Notify the Police Communications Centre, Cairns (000) that an evacuation is not required.

3.2.2 Preventative actions for Embankment Stability Issues:
• Radios issued to all PAR affected by a Sunny Day Failure;
• Issue individual Evacuation Plans;
• Each house is to be visited to explain:
 - what to do,
 - where to go, and
 - when the emergency is over.
• Independent gauging system installed and monitored;
• Gauging Station to monitor flows downstream of the dam and provide automatic siren when the depth of flow reaches a level where there is concern over the integrity of the dam;
• Public awareness of the siren system and what action should be taken if it is activated; and
• Public awareness of the evacuation plan.

3.3 SEEPAGE EVENTS

Characteristics:
• Increase in seepage or additional cracking or increased crack widths in dam wall.

Table 4: Procedures to follow if abnormal seepage occurs

<table>
<thead>
<tr>
<th>Activation</th>
<th>General Characteristics</th>
<th>When and what to check</th>
<th>What needs to be done and by whom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert</td>
<td>Identification of new areas of seepage or growth in existing areas of seepage</td>
<td>Look for source of seepage.</td>
<td>• EAP Officer to inspect and monitor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Notify MWW and LDC of incident and maintain communications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• MWW to authorise remedial action if practical.</td>
</tr>
<tr>
<td>Lean Forward</td>
<td>Detection of signs of cloudy water in seepage – look for the source of cloudy water</td>
<td>Continue monitoring.</td>
<td>• EAP Officer to continue monitoring and maintain communications with MWW and LDC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• MWW to determine remedial works and/or lowering water level and maintain communications with LDC.</td>
</tr>
<tr>
<td>Stand-up</td>
<td>Seepage developing further. Discharge is clouding and increasing (piping failure has started) Progressive internal Erosion of the embankment or foundation to form an open conduit or</td>
<td>Continue monitoring.</td>
<td>EAP Officer will</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Continue monitoring and reporting situation;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Carry out early warning process;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Notify LDC, MWW; and Turn sirens off (if activated).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MWW will: review the reports;</td>
</tr>
</tbody>
</table>
EMERGENCY ACTION PLAN
Ibis Creek Dam

3.3.1 Detailed Actions
If leakage rates rise for no corresponding rise in water level or if additional cracking or increased cracking in the concrete face is observed:

The EAP Officer will:
- Visually assess the increase in seepage and observe the turbidity of the seepage flow;
- Inspect the upstream concrete face for any signs of new cracks, displacements across cracks or joints, or whirlpools that might indicate the source of new or increased seepage;
- Report results of inspection to the MWW;
- Initiate the evacuation plan at the direction of the MWW;
- Release water from the dam by fully opening both outlet valves (if safe to do so) at the direction of MWW;
- Monitor, record and take photographs at regular intervals until advised otherwise by MWW;
- Provide regular reports to MWW; and
- Monitor and record and take photographs at regular intervals until advised otherwise by MWW.

The MWW will:
- Review the readings and results of inspection.

If the dam is not considered to be safe:

The MWW will:
- Direct the EAP Officer to initiate the evacuation plan;
- Notify the LDC, the DNRME hotline, Queensland Fire and Emergency Services Watch Desk Officer and Police Communications Centre, Mareeba that an evacuation is required;
- Direct the EAP Officer to release water from the dam by fully opening both outlet valves (if safe to do so);
- Request the EAP Officer to inspect the dam at regular intervals;
- Arrange for inspection of the dam by a RPEQ Engineer; and
- Provide regular updates to the LDC.

If the dam is considered safe:

The MWW will:
- Advise the EAP Officer that the emergency event is at an end;
- Notify the LDC that the evacuation plan had been activated, but has been cancelled because a review of the inspection indicated that the dam is now considered to be safe; and
• Provide a report to Director, Dam Safety within 30 days of the event.

This Event **ends** when advised by **MWW**.

The **EAP Officer** will:
• On authorisation from MWW, notify the evacuated people that the Emergency Event is at an end; and
• Compile an Emergency Event Report and forward to MWW.

The **LDC** will:
Coordinate the response and implement the local disaster management plan as required.

3.3.2 Preventative actions for Seepage Events:
• Hourly readings from gauging station downstream of the dam;
• V-notch and pipe flow measurements;
• Visual weekly inspections; and
• Monthly inspections to be reviewed by an RPEQ Engineer.

3.4 OTHER DAM SAFETY EVENTS

Table 5: Procedures to follow if other abnormal issues occur

<table>
<thead>
<tr>
<th>Activation</th>
<th>General Characteristics</th>
<th>When and what to check</th>
<th>What needs to be done and by whom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow slide</td>
<td>Collapse and flow of soil around the storage periphery.</td>
<td>During routine inspection and especially with sedimentary/ colluvial soils – look for material displacement around the storage rim.</td>
<td>Inspection Officer to report in weekly inspections. MWW to follow up.</td>
</tr>
<tr>
<td>Landslide</td>
<td>Mass movement of soil or rock from slopes and valley walls around the storage.</td>
<td>During routine inspection – look for material displacement.</td>
<td>Inspection Officer to report in weekly inspections. MWW to follow up.</td>
</tr>
<tr>
<td>Movement or cracking in structural concrete work</td>
<td>Failure of mechanical components such as pipes, gates etc.</td>
<td>During routine inspection or when mechanical problems such as a burst pipe or a jammed gate occur – look for any movement or cracking of the structural concrete work to determine the cause.</td>
<td>Inspection Officer to report in weekly inspections. MWW to follow up.</td>
</tr>
<tr>
<td>Failure of appurtenant structures or operating equipment such as abnormal operation of gates and valves or failure of components of the dam</td>
<td>Loss of ability to supply water.</td>
<td>After detecting an operational anomaly – identify and investigate the cause.</td>
<td>MWW to follow up.</td>
</tr>
<tr>
<td>Abnormal instrument readings (if installed)</td>
<td>A sudden change in the values of instrument readings.</td>
<td>On detection – check for equipment malfunction and investigate the cause</td>
<td>EAP Officer is to notify MWW. MWW will notify LDC.</td>
</tr>
</tbody>
</table>
3.4.1 Detailed Actions for Toxic Spills

Note: Under no circumstances shall EAP officers approach spills where the nature or toxicity of the substance is not known.

On detection or notification of a toxic or hazardous substance contaminating the catchment or storage the:

The EAP Officer will:
- In the event of an *emergency* telephone Queensland Fire and Rescue Services on 000;
- Identify the hazardous substance or chemical, if possible;
- Identify the location of the spill;
- Isolate the Irvinebank pipeline by closing valves;
- For *non-emergency* advice contact Queensland Fire and Rescue Services, by dialling 13 QGOV (13 74 68), in regard to the nature of the hazard; and
- Notify the MWW.

The MWW will:
- Assess the situation and advise if further action is required, for example:
 - Notify landowners downstream of the dam and visitors to the dam site who may be affected;
 - Take reasonable steps to isolate the spill or containment from the dam by construction of a containment embankment, or prevent further contamination; and
- Notify the LDC.

This Event ends when the spill has been contained or removed or is no longer considered to be a toxic hazard.

The EAP Officer will:
- Make a final inspection of the Dam and report back to MWW.

If the MWW considers the Event is over:

The EAP Officer will:
- Notify landowners downstream of the dam that the event has ended;
- Open the valves on the Irvinebank pipeline (if safe to do so); and
- Compile an Emergency Event Report and forward unedited copies to MWW.

The MWW will:
- Notify the EAP Officer to re-open the valves (if safe to do so) as directed;
- Notify the LDC and the DNRMME hotline, and appraise each of the situation; and
- Provide a report on the event to the Director, Dam Safety within 30 days.
The LDC will:

▪ Coordinate the response and implement the local disaster management plans as required.

3.4.2 Preventative actions for Other Dam Safety Events:

▪ Secure site; and

▪ Weekly inspections.
4. **ROLES AND RESPONSIBILITIES**

4.1 **EAP OFFICER**

The EAP Officer will:

- Monitor the dam instrumentation and Bureau of Meteorology website for any potential emergency conditions;
- Follow the Emergency Action Plan in time of emergency;
- During an emergency event, report to and receive instructions from the MWW or if he cannot be contacted, the SWO;
- In an emergency event, take steps to ensure personal safety and the safety of other EAP Officers and the public;
- Record details of the Emergency Events in the Storage Log Book and take relevant photographs. Details which should be recorded are time and date, water level readings, rain gauge readings, details of all phone calls, actions and directions from MWW or SWO;
- Provide regular reports to the MWW for evaluation during the emergency or if he cannot be contacted, the SWO;
- During an emergency event, the EAP Officer should refer the media to the LDC;
- In the event that the EAP Officer is unable to fulfil these duties, advise EAP Backup 1 or 2 of any intended absence from the area and leave a point of contact;
- Immediately notify the EAP Backup officers when the Emergency Action Plan is being initiated;
- Notify MWW of names and contact details of personnel undertaking and/or relieving the role of EAP Officer and EAP Backup 1 or 2;
- Keep the Emergency Action Plan in a clean, secure facility; and
- After an emergency event, prepare an Emergency Event Report and send it to the MWW.

4.2 **EAP BACKUP 1 AND 2**

The EAP Backup 1 and 2 will:

- Assist the EAP Officer in times of emergency;
- Follow the Emergency Action Plan during emergency events;
- During adverse weather conditions, EAP Backup 1 and 2 will attempt to contact the EAP Officer; and
- If the EAP Officer is unavailable, they will undertake the responsibilities of the EAP Officer should that person be unavailable.

4.3 **MANAGER WATER AND WASTE**

The MWW will:

- Review the Emergency Action Plan in consultation with MSC and District Disaster Management Group by 1st September each year;
- Ensure the Emergency Action Plan is distributed according to the Distribution List and that the police and disaster management groups are conversant with the plan;
- Ensure this Emergency Action Plan is implemented;
- Approve the person undertaking and/or relieving in the role of EAP Officer and EAP Backup Officers;
- Ensure the EAP Officer and Backup Officers are conversant with the Emergency Action Plan;
- Ensure that the Population at Risk in Irvinebank are visited annually and informed of the EAP and the expectations of them in dam safety emergency events;
- Notify the LDC, QFES Watch Desk Officer and the DNRME hotline, when the evacuation
plan has been activated;
▪ Monitor all emergency events;
▪ Provide regular updates during emergency events to the LDC (as required by the situation or as mutually determined as the situation changes);
▪ Evaluate reports from EAP Officers and provide directions where required in this plan; and
▪ Within thirty (30) days of an event, present an Emergency Event Report to Director Dam Safety.

4.4 LOCAL DISASTER COORDINATOR

The Chief Executive Officer Mareeba Shire Council is the Local Disaster Coordinator and will:
▪ Review the Emergency Action Plan in consultation with the MWW by 1st September each year;
▪ Authorise this Emergency Action Plan; and
▪ Notify the Police Communications Centre, Cairns (000) when an evacuation is required in accordance with this plan.

The following excerpt is taken from Disaster Management Act 2003:

The Local Disaster Coordinator has the following functions (excerpt taken after the Disaster Management Act 2003):
(a) to coordinate disaster operations for the local group;
(b) to report regularly to the local group about disaster operations; and
(c) to ensure, as far as practicable, that any strategic decisions of the local group about disaster operations are implemented.

4.5 QUEENSLAND POLICE COMMUNICATION CENTRE, CAIRNS

The Queensland Police Communication Centre, Cairns will:
▪ Contact Herberton Police and advise them to activate their local SOP to co-ordinate the evacuation of the Population at Risk.

4.6 QUEENSLAND POLICE, HERBERTON

The Queensland Police, Herberton, will:
▪ Activate their local SOP to co-ordinate the evacuation of the Population at Risk when directed by Queensland Police Communication Centre, Cairns.

4.7 MAREEBA LOCAL DISASTER MANAGEMENT GROUP (LDMG)

The Mareeba LDMG will:
▪ Coordinate the operational response of the LDMG;
▪ Develop comprehensive Local Disaster Management Planning strategies;
▪ Design and maintain public education / awareness programs;
▪ Design, maintain and operate a Local Disaster Coordination Centre, including the training of sufficient personnel to operate the Centre;
▪ Coordinate support to response agencies;
▪ Carry out reconnaissance and impact assessments;
▪ Provide public information prior to, during and following disaster event impacts;
▪ Make recommendations regarding areas to be considered for authorised evacuation;
- Pre-arrange evacuation areas and warnings with Queensland Fire and Emergency Services;
- Provide public advice re voluntary evacuation;
- Identify, resource, staff and operate Evacuation Centres;
- Invite the MWW to LDMG meetings;
- Coordinate the operational response in accordance with the Local Disaster Management Plans; and
- Issue emergency alerts and warnings to the population at risk.
5. EVACUATION PROCEDURE

5.1 GENERAL

The gauging station at Ibis Dam has been programmed to activate the sirens in Irvinebank when the water level in the dam reaches 827 m or when there is 1.5 m of water flowing through the v-notch weir downstream of the dam. When the sirens activate, people at risk should immediately implement their individual evacuation plans if there has not been any early warning, otherwise they should evacuate to assembly points at the school or the rural fire shed.

The EAP Officer can also manually activate the sirens to provide early warning of a potential emergency event, for example when the water level is approaching 827 m and there is heavy rain in the catchment or provide evacuation warning if the telemetry system fails.

5.2 EARLY WARNING

If the water level in Ibis Dam is approaching 827 m and there is heavy rain in the catchment, the EAP Officer will:

▪ Manually activate the public warning siren(s) for 20 seconds; and
▪ Send EAP Backup Officer to notify all residents whom cannot be contacted by telephone, assist anyone who requires assistance, and determine the whereabouts of any people who could not be contacted.

5.3 EVACUATION WARNING

The sirens will be automatically activated when the water level in the dam reaches 827 m or when there is 1.5 m of water flowing through the v-notch weir downstream of the dam.

The evacuation warning can be recognised by continuous sounding of the sirens. (These should be switched off after the population at risk have evacuated.)

When this warning is heard, people at risk should immediately implement their individual evacuation plans if there has not been any early warning, otherwise they should evacuate to assembly points at the school or the rural fire shed.

The EAP Officer will:

▪ Advise population at risk to evacuate; and
▪ Check that people have evacuated.

5.4 SITUATION MONITORING

The EAP Officer will:

▪ Provide updates to the evacuated people.

5.5 END OF EVENT

The EAP Officer will:

▪ Activate the public warning siren(s) for 20 seconds; and
▪ Advise people that the event has ended and thank them for their understanding and cooperation.

5.6 INDIVIDUAL EVACUATION PLANS

Individual Evacuation Plans have been prepared for and distributed to residents at risk. They are
advised to implement their Evacuation Plan if they hear the Evacuation Warning or become aware of or suspect that an emergency event has occurred. See APPENDIX 6 - INDIVIDUAL EVACUATION PLANS.
6. **PREDICTED FLOOD LEVELS AND FLOOD TRAVEL TIMES**

6.1 **PREDICTED DEPTH OF FLOODING**

Table 6: Procedures to follow if other abnormal issues occur

<table>
<thead>
<tr>
<th>Scenario</th>
<th>MacDonnell Creek Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inundation Depth above Bridge Deck (m)</td>
</tr>
<tr>
<td>Sunny Day Breach</td>
<td>3.0</td>
</tr>
<tr>
<td>Acceptable Flood Capacity (for 287mm in 2hrs)</td>
<td></td>
</tr>
<tr>
<td>- With breach</td>
<td>6.0</td>
</tr>
<tr>
<td>- Without breach</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Note: Gauge Board readings at this location are independent and have no relation to levels at other locations and are not related to AHD or GDA.

The deck level of McDonald Creek Bridge is EL 742.92 mAHD.

6.2 **FLOOD WAVE TRAVEL TIMES**

Flood wave travel times within Ibis Creek have been modelled for the above Scenarios. The travel distance to the first house is 1850 metres.

The observations shown in Table 7 should be used as a guide.

Table 7: Travel time to first house

<table>
<thead>
<tr>
<th>Flow Scenario</th>
<th>Annual Exceedance Probability</th>
<th>Travel Time to first house (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dam Crest Flood Failure</td>
<td>1:9,300</td>
<td>14</td>
</tr>
<tr>
<td>Acceptable Flood Capacity Failure</td>
<td>1:72,000</td>
<td>11</td>
</tr>
<tr>
<td>Probable Maximum Flood Failure</td>
<td>1:10,000,000</td>
<td>5</td>
</tr>
</tbody>
</table>

There is considerable uncertainty in the values of flood travel times and thus prompt warning should be given to population at risk on being aware of a potential dam break event.
7. **COMMUNICATIONS**

The primary means of communications between the EAP Officer and parties external to Irvinebank shall be by telephone.

The satellite phone will be used should the normal landline fail to operate.
8. **STORAGE LOG BOOK**

The EAP Officer shall ensure that events and appropriate data are recorded in the Storage Log Book. All new entries are to be copied and forwarded to MWW monthly.

Entries shall be a record of water levels, weather observations, inspections, actions that are carried out, telephone conversations that are related to the emergency event, and comments identifying problems and unusual events.

All entries shall be written legibly and be unedited and signed by the person making the entry. Errors made shall be struck out and initialled.

The Storage Log Book shall be kept permanently in the EAP Officer residence. It must be available on request and its location known to, EAP Backup Officers and MWW.
9. **DAM DETAILS**

9.1 DAM DETAILS

Table 8: Details of Ibis Dam

<table>
<thead>
<tr>
<th>Name and location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Dam</td>
<td>Ibis Creek Dam</td>
</tr>
<tr>
<td>Other Names</td>
<td>None</td>
</tr>
</tbody>
</table>
| Location | Latitude 17° 26’ 02”
| | Longitude 145° 12’ 59” |
| DNRME Region | North |
| Shire | Mareeba Shire Council |
| Nearest Town | Irvinebank |
| Stream and AMTD | Ibis Creek 2.1 km |
| Licence No | N/A |
| Safety Conditions | 17 June 2015: Notification of changed safety conditions for Ibis Dam, Dam No 96 (DW#3069020) |
| Current Owner | Mareeba Shire Council |
| Designer (Date) – Original | Completed 1907 |
| Stage 2 – Stabilisation | Completed 1997 |
| Stage 3 - Stabilisation | Completed June 2013 |
| Construction Authority Original | Not Known |
| Stage 2 – Stabilisation | GHD (Gutteridge Haskins and Davey Pty Ltd) |
| Stage 3 - Stabilisation | SunWater |
| Construction Contractor - Original Stabilisation | Not Known (1907) |
| | QBridge (1997) |
| Stage 3 Upgrade Design | SunWater (2013) |
| Stage 3 Construction | RoadTek (2013) |
| Safety Review | 2010 (SunWater) |
| Next Safety Review | 1 September 2032 |

Storage characteristics

- Full supply level (FSL): EL 825.5 mAHD
- Storage capacity: 225 ML
- Surface area: 4 Ha at FSL
- Length of shoreline: 1.64 km (derived from aerial photo)
- Main Spillway capacity: 224 m³/s at EL 828 mAHD (AEP 1:100,000)
- Dam crest level (DCL) - Lower: EL 826 mAHD
- Dam crest level (DCL) - Upper: EL 828 mAHD
- Catchment area: 620 ha
- Catchment description: Steep hills covered in medium vegetation
- Methods: Frequent to large events based on Book II, Section I Australian Rainfall and Runoff (ARR) (IEAust 2003) and Volume 2, ARR (IEAust 1987) for AEPs of 1:50 and 1:100, for storm burst durations up to 120 hours.
EMERGENCY ACTION PLAN
Ibis Creek Dam

Large to rare events as per Book VI, ARR (IEAust 2003). The CRC-FORGE regional rainfall estimates prepared for storm burst durations between 24 and 120 hours for AEPs of 1:50 to 1:2000.
PMP estimates and rainfall temporal patterns as per the Revised Generalised Tropical Storm Method for storm durations between 24 hours and 120 hours.
Extreme events as per Book VI of ARR (IEAust 2003) for the range of AEPs of 1:2000 up to the AEP of PMP.

<table>
<thead>
<tr>
<th>PMF Level</th>
<th>EL 829.64 mAHDo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMF Volume</td>
<td>4,400 ML</td>
</tr>
<tr>
<td>PMF AEP</td>
<td>1:10,000,000 (PMP)</td>
</tr>
<tr>
<td>PMF Peak Discharge</td>
<td>577 m³/s</td>
</tr>
<tr>
<td>Historical Maximum Water Level</td>
<td>EL 826.1 m (Cyclone Larry in 20/03/2006 & Cyclone Tasha 25/12/2010)</td>
</tr>
</tbody>
</table>

Description of dam wall

Wall Type-Main Wall Mass concrete with rock core and central ogee spillway
Wall Height (above lowest D/S toe) 17.5 m
Crest Elevation EL 828 mAHDo
Wall Length 56 m
Materials Description Mixture of coarse and fine river gravel, natural river sand

Description of spillway

Spillway Description The spillway is a central uncontrolled ogee crest with broad crested weirs on either side
Spillway - Ogee Crest EL 825.5 mAHDo
Spillway - Broad Crest EL 826.0 mAHDo
Spillway Width - Ogee 13 m
Energy Dissipation Method Natural rock in the creek bed at the toe
Design Head Unknown
Control Description Uncontrolled
Auxiliary spillway N/A

Description of outlet works

River Release DN 300 mm Outlet Pipe
Conduit Description DN 250 mm Outlet Pipe
Intake Works The intake to the river release pipe is a floating intake valve
Regulator Description DN 250 mm and DN 300 mm gate valves.

Trigger Points for Sirens

Upstream Water Level EL 827 mAHDo
Downstream V-Notch 1.5 m over the weir – based on 1.2 m estimated depth of

6 Flooding of houses will start when water level reaches 827.5 mAHDo. EL 827.9 mAHDo is the AFC for 1:72,000 AEP
9.2 FLOOD HANDLING CAPABILITY

The following excerpt is taken from Comprehensive Surveillance Report, AURECON 2016.

The latest detailed flood study completed for Ibis Dam was included within the 2008 Failure Impact Assessment, undertaken by SunWater. At this time the Stage 3 works were not completed, however the findings are considered to remain valid, as the only change affecting the dams ability to discharge flood waters was to raise the overall dam crest to 828.0 mAHD at the far left and right abutments.

The data used in the flood study included the spillway rating curve, catchment data and the RORB runoff-routing model developed for the Ibis Dam catchment. This determined the peak storage levels and spillway discharges at Ibis Dam for the critical storm events considered. The Spillway Discharge Capacity for the dam (crest level of 828 mAHD) is 224 m³/s.

Simulations of the runoff-routing model were performed for a range of storms of duration between 1 hour and 3 hours to determine the inflow and outflow hydrographs. The 2 hour storm duration proved to be critical for all storm events in the catchment, with the results summarised below.

9.3 POTENTIAL PROBLEM IDENTIFICATION

Officers inspect the dam weekly and complete an inspection checklist. An RPEQ Engineer visits the dam periodically and reviews the monthly inspection report. Both weekly and monthly inspection checklists are sent to MWW who will check and evaluate these reports.

It is important that the dam is inspected during an emergency event or shortly thereafter by the EAP officer, providing it is safe to do so. Potential problems that can be identified during these inspections are discussed in APPENDIX 3 - POTENTIAL PROBLEM IDENTIFICATION. Any abnormalities shall be immediately brought to the attention of MWW.
10. **EMERGENCY EVENT REPORT**

The EAP Officer shall prepare an Emergency Event Report after each emergency event and forward it to the MWW within 15 days of the event.

The report maybe free format but shall contain at least:

- A description of the event summarised from the Storage Log Book;
- Description of any observed damage or other consequences;
- Photographs;
- A summary of data recorded during the event and the times of these recordings such as;
 - Rainfall,
 - Water level within the storage,
 - Seepage flows and observations.
- Details of communication which took place during the emergency;
- Comment on the adequacy of the Emergency Action Plan;
- Any recommendations or suggested changes to the Emergency Action Plan; and
- Any further comments considered necessary.

The MWW shall provide a report on the event to the Director, Dam Safety within 30 days of the event.
11. **REVISION OF EVACUATION PLANS**

Each year in July the EAP Officer shall visit each house/structure at risk and revise the evacuation plan. The revised plan shall be forwarded to MWW.

The MWW will ensure that revised plans are posted or delivered to each resident.
12. REFERENCES

Workplace Health and Safety Act 2011
Ibis Creek Dam - Storage Log Book
Ibis Dam - Hydraulics and Hydrology Flood Study, SunWater, September 2006
Final Design Report, Ibis Creek Dam Stage 3 Remedial Works, SunWater, December 2010
Ibis Dam 2016 Comprehensive Surveillance Report, August 2016
APPENDIX 1

LOCALITY PLAN
APPENDIX 2

CATCHMENT BOUNDARY
APPENDIX 3

POTENTIAL PROBLEM IDENTIFICATION
<table>
<thead>
<tr>
<th>TYPE OF DEFICIENCY</th>
<th>LOOK FOR</th>
</tr>
</thead>
</table>
| Seepage | Quantity/quality of drain outflows, seepage and its source(s).
 Location, type and extent of deteriorated concrete.
 Extent of moist, wet or saturated areas.
 Wet areas or areas where the vegetation appears greener or lusher in the toe area.
 An increase in the amount of water being released from toe drains or through the v-notch weirs. (Remember to take into account changes in the reservoir level.)
 Turbidity or cloudiness of the seepage.
 Any change in conditions. |
| Cracking/Movement | Location, length, displacement and depth of cracks.
 Desiccation Cracking: A random honeycomb pattern of cracks usually found on the crest and the downstream slope.
 Transverse Cracking: Cracks that are perpendicular to the length of the dam usually found on the crest.
 Longitudinal Cracking: Cracks that are parallel to the length of the dam. Longitudinal cracks may be associated with stability problems in the slopes.
 Cracking concrete deterioration.
 Disintegration.
 Spalling.
 Efflorescence.
 Drummy concrete.
 Popouts.
 Pitting.
 Scaling.
 Surface defects.
 Misalignment.
 Differential movement in cracks.
 Conditions of joints. |

Note: This tabulation taken from Queensland Dam Safety Management Guidelines-February 2002.

WHEN TO GET FURTHER ASSISTANCE

Several of the deficiencies covered above are very serious. If you observe any significant deficiency, you should advise the Director Infrastructure Services and Manager Water and Waste as soon as possible.
APPENDIX 4

INUNDATION PLANS
INUNDATION PLANS

230741: IBIS DAM FAILURE IMPACT ASSESSMENT, INUNDATION PLAN – MAR 2008, PROBABLE MAXIMUM FLOOD 1:10,000,000 AEP

230742: IBIS DAM FAILURE IMPACT ASSESSMENT, INUNDATION PLAN – MAR 2008, DAM CREST FLOOD 1:9,300 AEP

230743: IBIS DAM FAILURE IMPACT ASSESSMENT, INUNDATION PLAN – MAR 2008, DESIGN ACCEPTABLE FLOOD CAPACITY 1:72,000 AEP

230760: IBIS DAM FAILURE IMPACT ASSESSMENT, INUNDATION PLAN – MAR 2008, SUNNY DAY FAILURE
APPENDIX 5

LIST OF PAR CONTACTS

Appendix 5 has been redacted
APPENDIX 6

INDIVIDUAL EVACUATION PLANS

Appendix 6 has been redacted
APPENDIX 7

STANDING OPERATING PROCEDURE
SMALL TO MEDIUM SPILLWAY DISCHARGES
Standing Operating Procedures
for
Small to Medium Spillway Overflows

Adopted from QLD State Government Documents
Table of Contents

1. Purpose ... 1
2. Scope ... 1
3. Personnel Affected and Responsibilities 1
4. Procedures ... 1
5. References .. 2

Appendices

Appendix A – Inspecting for Deficiencies
1. Purpose

Ibis Dam is owned, managed and maintained by Council. Weekly and monthly monitoring is carried out by local dam safety trained officers employed by Council. The three local officers are also the Emergency Action Plan officer and backup officers.

In accordance with the dam safety management program the Dam is to be inspected immediately before the spillway starts to overflow.

2. Scope

This Procedure applies to spillway overflow events that are less than the historical maximum event with a storage level of EL 826.1 mAHDM. The personnel are the Emergency Action Plan (EAP) Officers listed in the EAP for Ibis Dam.

3. Personnel Affected and Responsibilities

<table>
<thead>
<tr>
<th>Water & Waste Engineer</th>
<th>A Registered Professional Engineer, Queensland, responsible for overseeing monthly inspections of the dam.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Action Plan Officers (EAP Officers)</td>
<td>Officers based at Irvinebank and at or near Ibis Dam responsible for carrying out EAP procedures for the Dam and this Standing Operating Procedure.</td>
</tr>
<tr>
<td>Director Infrastructure Services</td>
<td>1. The person responsible for approving: the Standing Operating Procedures; the Operation and Maintenance Manual; the persons undertaking the role of EAP Officers. 2. Authorise the management, receive, storage and integrity of data for the Ibis Dam. 3. Reviewing and authorising documentation produced by the Water and Waste Engineer and consultants on the dam. 4. Initiating investigations into abnormal behaviour of the dam. 5. Manage the distribution, approval and revision control of documentation relating to this Procedure.</td>
</tr>
<tr>
<td>Chief Executive Officer</td>
<td>The person responsible for approving the Emergency Action Plan.</td>
</tr>
</tbody>
</table>

4. Procedures

The EAP Officer should be aware of the storage height and rainfall conditions, and be able to estimate when the spillway is likely to overflow.

- Two hours before the spillway is estimated to overflow, The EAP officer shall visit the dam if safe access is possible, and visually inspect the Dam for any deficiencies.
- Check for new cracking or increased crack widths in the spillway face. Appendix A gives a guide for inspecting the Dam for deficiencies.
- Read the storage height gauge and rain gauge at the EAP Officer's residence at one-hour intervals.
- Notify the Local Disaster Coordinator that a spillway discharge is likely.
Standing Operating Procedures
Small to Medium Spillway Overflows

- Notify the Director Infrastructure Services of storage height and that a spillway discharge is likely. Regularly update Director Infrastructure Services during the rainfall event. At least daily or as directed by the Director Infrastructure Services.

- If the storage level is predicted to reach EL 826.0 mAHD, the EAP Officer is to implement the Major Overflow Event in the EAP.

- When the preceding twelve-hour rainfall is less than 50 mm and the storage height gauge is less than EL 825.75 mAHD and falling, and local stream rises have fallen sufficiently to allow access to and egress from the site, the EAP Officer is to make an inspection of the Dam and advise the Director Infrastructure Services.

- EAP Officer is to advise the Local Disaster Coordinator that there is no longer the possibility of a major overflow event and stands down.

5. References

- Emergency Action Plan, Ibis Dam.
INSPECTING FOR DEFICIENCIES: SUMMARY

<table>
<thead>
<tr>
<th>TYPE OF DEFICIENCY</th>
<th>LOOK FOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEEPAGE</td>
<td>A water flow or sand boil on the lower portion of the downstream slope or toe area, especially at the groins.</td>
</tr>
<tr>
<td></td>
<td>Leakage around conveyance structures such as outlet works.</td>
</tr>
<tr>
<td></td>
<td>Wet areas or areas where the vegetation appears greener or more lush on the embankment slope or toe area.</td>
</tr>
<tr>
<td></td>
<td>Blocked toe drains.</td>
</tr>
<tr>
<td></td>
<td>An increase in the amount of water being released from toe drains. (Remember to take into account changes in the reservoir level.)</td>
</tr>
<tr>
<td></td>
<td>Turbidity or cloudiness of the seepage.</td>
</tr>
<tr>
<td>CRACKING</td>
<td>Desiccation Cracking: A random honeycomb pattern of cracks usually found on the crest and the downstream slope.</td>
</tr>
<tr>
<td></td>
<td>Transverse Cracking: Cracks that are perpendicular to the length of the dam usually found on the crest.</td>
</tr>
<tr>
<td></td>
<td>Longitudinal Cracking: Cracks that are parallel to the length of the dam. Longitudinal cracks may be associated with stability problems in the slopes.</td>
</tr>
<tr>
<td>INSTABILITY</td>
<td>Slides on the upstream or downstream slopes.</td>
</tr>
<tr>
<td></td>
<td>Bulging, especially at the toe of the dam.</td>
</tr>
<tr>
<td>DEPRESSIONS</td>
<td>Misalignment in the crest and embankment slopes found by sighting along fixed points.</td>
</tr>
<tr>
<td></td>
<td>Sinkholes found by checking and probing each depression.</td>
</tr>
<tr>
<td></td>
<td>Remember, sinkholes have steep, bucket like sides while minor depressions have gently sloping, bowl like sides.</td>
</tr>
<tr>
<td>MAINTENANCE CONCERNS</td>
<td>Inadequate Slope Protection: Check for bald areas or areas where the protection is sparse or damaged.</td>
</tr>
<tr>
<td></td>
<td>Surface Runoff Erosion: Check for gullies or other signs of erosion. Make sure to check the low points along the upstream and downstream shoulders and groins since surface runoff can collect in these areas.</td>
</tr>
<tr>
<td></td>
<td>Inappropriate Vegetative Growth: Check for excessive and deep rooted vegetative growth.</td>
</tr>
<tr>
<td>TYPE OF DEFICIENCY</td>
<td>LOOK FOR</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Debris:</td>
<td>Check for debris on and around the dam, especially near outlet works or spillway inlets.</td>
</tr>
<tr>
<td>Animal Burrows:</td>
<td>Check for damage caused by burrowing animals.</td>
</tr>
</tbody>
</table>

Note: This tabulation taken from Dam Safety Surveillance Field Manual-August 2005

WHEN TO GET FURTHER ASSISTANCE

Several of the deficiencies covered above are very serious. If you observe any of the following deficiencies, you should consult with the Manager Water and Waste:

- Sand boils or turbid seepage.
- Seepage that has increased since the last inspection (taking the reservoir level into consideration).
- Cracking that extends below the reservoir level or potential reservoir level.
- Transverse and longitudinal cracking.
- Deep seated slides or bulging associated with slides.
- Sinkholes or other large depressions.
- Deep rooted vegetation that might need to be removed.

If you are unsure whether or not a condition poses a threat to the safety of the dam, you should discuss your findings with the Director Infrastructure Services.
OVERVIEW

The monitoring instrumentation for Ibis Dam consists of:

- Rain gauges at the Dam Wall and Mt Orman (top of the Dargo Range (approx. 2.9 km ENE);
- Dam Height measurement;
- V-Notch weir flow measurement;
- Monitoring station and controls (Louden House and Mareeba Shire Offices); and
- Town warning system (refer to Figure 1).

Ibis Dam telemetry system has been replaced with hardware compatible with existing MSC telemetry, using:

- Kingfisher RTU’s;
- the same radio equipment used throughout MSC; and
- installation of Citect server (HMI) at the museum.

Data collected from the dam is sent to both the Mareeba SCADA system and to the Irvinebank Museum computer: both sites can control the system.

A repeater site has been constructed on the hill above the museum (refer to Figure 2).

Mt Orman is the hub for all of the sites, communicating with Mareeba SCADA via NextG, Ibis Dam via licensed data radio network, and the Museum and three siren sites using licensed radio via the new repeater site located near the town reservoirs.

Internet and telemetry are provided to the Museum computer via NextG modem at Mt Orman via the repeater site: set points and sirens can be adjusted remotely from Mareeba. The speed is limited by the capability of the NextG modem at Mt Orman.

Voice radio is now available at the Dam wall, Mt Orman, Repeater and Museum with an installed voice radio/speaker system using data radios.

SIREN SYSTEM

1. If the Critical siren system triggers the following will occur:
 - sirens on towers within Irvinebank will sound, and
 - the alert messages to specified mobile and landline phones will be sent.

 The following scenarios will cause the Critical siren to occur:

 - the dam water height reaches 827 mAHĐ and/or
 - height of water over the weir reaches 1.5 m.

 NOTE: Should some or all the sirens trigger for no apparent reason they can be isolated: at the siren(s); or the museum; or remotely via the SCADA system.

 Critical siren automated alert:

 The following personnel (nominated mobile and landline phones) will be alerted:
 - Museum (EAP Officer);
 - All residents on the Evacuation PAR Contact list (Appendix 5) - with a landline phone number;
 - Supervisor Water Reticulation;
 - Supervisor Treatment Plant Operations;
 - Manager Water and Waste;
• Chief Executive Officer (LDC);
• Far North DDMG Executive Officer;
• Herberton Police, Officer in Charge;
• Deputy District Disaster Chairperson;
• District Disaster Coordinator;
• Cairns Police Communications.

The following text message will be transmitted to each recipient:

EMERGENCY! Ibis Dam HIGH Flood Risk - EVACUATE TO HIGH GROUND IMMEDIATELY

NOTE: MSC will be working with QFES, in conjunction with QLD Police and the residents of Irvinebank (mentioned in this EAP), to further develop the Emergency Alert (EA) Polygon system.

2. The following (non-critical) alerts have been programed to notify specified mobile phones and landline phones for and of the following scenarios:
 • Dam water height has reached 825.5 is rising and it is predicted to keep rising; and/or
 • Heavy rainfall occurs within the catchment, the Dam is near to overflowing and Dam water height rise rate suddenly increases; or
 • Height of water over the V-notch suddenly increases.

The following personnel (nominated mobile and landline phones) will be alerted for the previous scenarios in successive order (should the telephone not be answered):

• Museum (EAP Officer);
• Supervisor Water Reticulation;
• Supervisor Treatment Plant Operations;
• Manager Water and Waste.

3. The following scenarios will trigger messages to be sent to operational staff via specified mobile phones and landline phones:
 • All Communications fail, and/or
 • Instrument fault, and/or
 • Low battery, and/or
 • System not available, and/or
 • Siren(s) disabled.

The following personnel (nominated mobile and landline phones) will be alerted for the previous scenarios in successive order (should the telephone not be answered):

• Museum (EAP Officer);
• Supervisor Treatment Plant Operations;
• Supervisor Water Reticulation.
Figure 1
IBIS DAM
SCADA Schematic Diagram

Legend

- Scada Communication Alignment
- Transmission/Receival Tower
- Siren Tower
- Museum (Scada Monitoring & Control)
- Catchment Boundary

Figure 2

Scale 1cm = 150 m at A3
Map Grid of Australia Zone 55 (GDA94)

Mareeba Shire Council

©2019 Mareeba Shire Council (MSC). Based on the national data and cartography provided by MSC and the State of Queensland Department of Natural Resources & Mines. DMA94 (2018). In consideration of these agencies permitting use of this data, you acknowledge and agree that these agencies give no warranty in relation to the data including, without limitation, the accuracy, currency, reliability, completeness, or suitability and accept no liability (including without limitation, liability in negligence) for any loss, damage or cost (including consequential damage) relating to any use of the data. Data must not be used for direct marketing or be used in breach of the privacy law.
APPENDIX 9

DATA
APPENDIX 10

EVACUATION CHECKLIST

Appendix 10 has been redacted