<table>
<thead>
<tr>
<th>Author</th>
<th>Name:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIM Water Distribution Superintendent (Reviewer)</th>
<th>Name:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Owner MIM Central Engineering Manager</th>
<th>Name:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mount Isa City Council Chief Executive Officer</th>
<th>Name:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>District Disaster Management Group Executive Officer</th>
<th>Name:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Controlled Copy List

<table>
<thead>
<tr>
<th>Copy Number</th>
<th>Position (Name)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mount Isa Mines Limited Central Engineering Manager</td>
<td>Mount Isa</td>
</tr>
<tr>
<td>2</td>
<td>Water Distribution Superintendent</td>
<td>Mount Isa</td>
</tr>
<tr>
<td>3</td>
<td>Leichhardt River Dam Caretaker</td>
<td>Leichhardt River Dam</td>
</tr>
<tr>
<td>4/5</td>
<td>MIM Representatives on LDMG</td>
<td>Mount Isa</td>
</tr>
<tr>
<td>6</td>
<td>Director Dam Safety Water Planning and Regulation, DNRME</td>
<td>Brisbane</td>
</tr>
<tr>
<td>7</td>
<td>Mount Isa City Council Chief Executive Officer (Acting)</td>
<td>Mount Isa</td>
</tr>
<tr>
<td>8</td>
<td>LDMG Executive Officer Mount Isa District</td>
<td>Mount Isa</td>
</tr>
<tr>
<td>9</td>
<td>Mount Isa Mines Crisis Room (SRRT) 1st Floor, Met Plant Building</td>
<td>Mount Isa</td>
</tr>
<tr>
<td>10</td>
<td>DDMG Executive Officer Mount Isa District</td>
<td>Mount Isa</td>
</tr>
</tbody>
</table>
Document Control Details

Controlled Copy Number: 1

Revision Status: Original Copy

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Revision Description</th>
<th>Revision Date</th>
<th>Authorisation Signature</th>
</tr>
</thead>
</table>
| 1 | MOMM - Change of email address
 | DNR&M - Change of contact name | 12-Sept-02 | 16/12/02 |
| 2 | DDC - New controlled copy
 | DNR&M - Change of contact name | 03-Dec-02 | 16/12/02 |
| 3 | DNRM&E - Change of contact name
 | - Change business name / initials
 | ES - Change of contact name
 | Maunsell - Change of contact name
 | MICC - Change of contact name
 | SES - Change of phone numbers
 | SSM - Change of contact name
 | SSM - Change of title
 | WS - Change of contact name
 | 21-Sept-04 | 30/09/04 | | |
| 4 | Notification List updated. | 30-Jun-07 | MIM Water Distribution Superintendent |
| 5 | Notification List updated. | 31-July-08 | MIM Water Distribution Superintendent |
| 6 | Department name change to Utilities
 | UM - Change of contact name
 | Incorporate recommendations from 2009 Comprehensive Inspection
 | DNRME - Change of Business Name
 | 30-May-09 | MIM Water Distribution Superintendent |
| 7 | Maunsell - Contact removed from copy list
 | ES - Contact removed from copy list
 | DNRM - Contact removed from copy list
 | 20-May-10 | MIM Water Distribution Superintendent | | |
| 8 | MIM Utilities Manager – Change of contact name and details. | 09-May-11 | MIM Water Distribution Superintendent |
| 9 | Mica Creek Power Station – Change of owners and manager | 14-May-12 | MIM Water Distribution Superintendent |
| 10 | Updated EAP & QLD flood commission of inquiry recommendations from review by dated 26/07/2012. Updated notification list Updated emergency events and actions Included BOM web site details Included locality maps Included discharge, storage curves Included flood inundation maps Changed LDMG Chief Executive Officer mobile phone numbers | 14-May-13 | MIM Water Distribution Superintendent |
| 11 | Name change on company from Xstrata Mount Isa Mines to Mount Isa Mines and XMIM to MIM Department name change to Central Engineering- CEM – Central Engineering Manager Email addresses changed for all MIM personnel | 20-July-14 | MIM Water Distribution Superintendent |
| 12 | General Update of Document | 05-Aug-15 | MIM Water Distribution Superintendent |
| 13 | General updates throughout document | 29/10/2016 | MIM Water Distribution Superintendent |
| 14 | General updates throughout document | 14/8/2017 | MIM Water Distribution Superintendent |
| 15 | General updates throughout document
| | Change of name from DEWS to DNRME
| | Submission date change
| | Address schedule of matters | 24/7/2018 |
| | MIM Water Distribution Superintendent |
Table of Contents

1. **LEICHHARDT RIVER DAM EAP REVIEW SHEET**
 Version Number 15, August 2018 | 7

2. **CONTROLLED COPY LIST**
 3

3. **DOCUMENT CONTROL DETAILS**
 4

4. **TABLE OF CONTENTS**
 7

 1. **PROCEDURAL FLOW CHART AND NOTIFICATION LIST**
 9
 1.1 **PROCEDURAL FLOW CHART**
 9

 2. **BASIC DETAILS OF DAM**
 12

 3. **PURPOSE, SCOPE AND RESPONSIBILITIES**
 13
 3.1 **PURPOSE**
 13
 3.2 **SCOPE**
 13
 3.3 **RESPONSIBILITIES**
 13
 3.3.1 **General**
 13
 3.3.2 **Leichhardt River Dam Caretaker (Caretaker), MIM**
 13
 3.3.3 **Central Engineering Manager (CEM), MIM**
 14
 3.3.4 **Water Distribution Superintendent, MIM**
 14
 3.3.5 **Local Disaster Management Group (LDMG)**
 15

4. **EMERGENCY EVENTS AND ACTIONS**
 16
 4.1 **GENERAL**
 16
 4.2 **EMERGENCY ACCESS AND COMMUNICATIONS**
 16
 4.3 **SIGNIFICANT FLOW OVER SPILLWAY**
 17
 4.3.1 **Low Flow over Spillway (less than 2.6m depth of flow)**
 18
 4.3.2 **Significant Flow over Spillway (2.6m to 3.5m depth of flow and rising)**
 18
 4.3.3 **Significant Flow over Spillway (greater than 3.5m depth of flow and rising)**
 19
 4.3.4 **Flow over Spillway Receding**
 20
 4.4 **POTENTIAL STRUCTURAL DAMAGE TO DAM**
 21
 4.4.1 **Events considered unlikely to pose risk of structural failure**
 21
 4.4.2 **Events which may pose risk of structural failure**
 24
 4.4.3 **Potential indicators of imminent structural failure**
 25
 4.5 **POTENTIAL CONTAMINATION OF DAM**
 26
 4.5.1 **Potential discharge of contaminant into the dam or dam catchment**
 26
 4.5.2 **Toxic algae bloom in storage/catchment**
 27

5. **SUPPORTING DOCUMENTS AND REFERENCE MATERIAL**
 29
 MODIFIED MERCALLI SCALE
 49
 EMERGENCY RESOURCES
 52
 DAM SAFETY EMERGENCY SITUATION REPORT
 54
 RAINFALL RECORD FOR
 58
 DAM LEVEL RECORD FOR
 59
 ALERT NOTIFICATION – 4.3.1 (LDMG, MIMSC, LJSS)
 62
Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Locality Map</td>
<td>30</td>
</tr>
<tr>
<td>B</td>
<td>Flood Inundation Maps</td>
<td>34</td>
</tr>
<tr>
<td>C</td>
<td>Weather Information (Flood Warning)</td>
<td>40</td>
</tr>
<tr>
<td>D</td>
<td>Discharge and Storage Curves</td>
<td>44</td>
</tr>
<tr>
<td>E</td>
<td>Modified Mercalli Scale</td>
<td>48</td>
</tr>
<tr>
<td>F</td>
<td>Emergency Resources</td>
<td>51</td>
</tr>
<tr>
<td>G</td>
<td>Dam Inspection Checklist and Safety Situation Report</td>
<td>53</td>
</tr>
<tr>
<td>H</td>
<td>Standard Phone, SMS and Email Messages</td>
<td>60</td>
</tr>
<tr>
<td>I</td>
<td>Public Access to Notification List via Internet</td>
<td>63</td>
</tr>
</tbody>
</table>
1 Procedural Flow Chart and Notification List

1.1 Procedural Flow Chart

Abnormal condition or significant discharge identified

ALERT

Advise CEM
Advise DNRME

Risk of structural failure?

yes

CEM to notify
- LDMG
- MIMSC
- DNRME
- MIWB
- Notification App. H

Lean Forward (4.4.2)

no

Is dam spilling?

yes

Water level 2.6m above spillway and rising?

LEAN FORWARD

no

Risk of contamination?

yes

CEM to notify
- LJSS
- 20kRes
- LDMG
- MIMSC
- DNRME
- MIWB
Monitor + issue updates every 8hrs

4.3.2

no

Event receding?

yes

no

4.4.3

All issues managed?

yes

no

4.5.1

STAND DOWN

4.5.2

LDMG to notify other parties and coordinate Emergency Response as appropriate

EMERGENCY RESPONSE

Caretaker to notify
- Recreational visitors

CEM to notify
- Emergency Services
- LDMG
- MIMSC
- 20kRes
- LJSS
- DNRME
- MIWB

4.3.3

4.4.3

4.5.3

4.5.1

4.5.2

STAND UP

Legend
4.XX – Procedure as detailed in Section 4
20kRes – Residents and affected properties within 20km downstream of the dam, as well as Isa Youth Camp and Lake Julius Storage Supervisor
Caretaker – Leichhardt River Dam Caretaker
CEM – Mount Isa Mines Central Engineering Manager
DNRME – Department of Natural Resources, Mining & Energy EER – Emergency Event Report
LDMG – Chairman of the Local Disaster Management Group
LJSS – Lake Julius Storage Supervisor
MIMSC – Mount Isa Mines Security Control
MIWB – Mount Isa Water Board
Notification List

The Notification List is a complete list of residents downstream from the dam and others who would need to be advised in any emergency event. Public who would like to be added to this list can do so via the Mount Isa Mines internet page as indicated in Appendix I or by responding to the public notice which would be in the local newspaper “The North West Star” prior to the wet season.

<table>
<thead>
<tr>
<th>Prioritised Order of Contact</th>
<th>Title / Name</th>
<th>Phone (w)</th>
<th>Phone (A/H)</th>
<th>Mobile</th>
<th>Facsimile</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mount Isa Mines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Central Engineering Manager</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leichhardt River Dam Caretaker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MIM Security Control</td>
<td>07 4744 2222 (24 Hours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Water Distribution Superintendent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DNRME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DNRME incident reporting hotline</td>
<td>1300 596 709</td>
<td>1300 596 709</td>
<td></td>
<td></td>
<td>damsafety@DNRME.qld.gov.au</td>
</tr>
<tr>
<td></td>
<td>Local Disaster Management Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LDMG Executive Officer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Area Director</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Health and Emergency Superintendent MIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mount Isa City Council Acting Chief Executive Officer -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>District Disaster Management Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mount Isa Police Complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Executive Officer DDMG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prioritised Order of Contact</td>
<td>Title / Name</td>
<td>Phone (w)</td>
<td>Phone (A/H)</td>
<td>Mobile</td>
<td>Facsimile</td>
<td>Email</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>Police</td>
<td>000</td>
<td>07 4744 1111</td>
<td>07 4744 1155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>State Emergency Service</td>
<td>000</td>
<td>07 4743 2601</td>
<td>07 4749 5537</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Qld Fire and Rescue Service</td>
<td>000</td>
<td>07 4743 2233</td>
<td>07 4749 1789</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Contacts on Properties within 20Km Downstream of Dam

1. Haslingden Station
2. West Leichhardt Station
3. Lake Julius Dam Storage Supervisor, Sunwater Limited
4. Lake Julius Dam Operator Maintainer, Sunwater Limited
5. Fred Haigh Pump Station Caretaker

People Affected by Changes to Water Supply

1. Mount Isa Water Board Operations Manager (No one in current role)
 - Phone: 07 4740 1030
 - Mobile: 0434 094 743

2. Stanwell Mica Creek Power Station Manager
 - Phone: 07 4745 4700
 - Control Room (24 Hours)

2. Diamantina Power Station, Control Room
 - Phone: 0427 315 970
 - Control Room (24 Hours)
2 Basic Details of Dam

<table>
<thead>
<tr>
<th>Location</th>
<th>Leichhardt River Road, 18km NNE of Mt Isa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
<td>20°34'53"S</td>
</tr>
<tr>
<td>Longitude</td>
<td>139°34'23"E</td>
</tr>
<tr>
<td>Construction Type</td>
<td>Concrete faced rock fill dam</td>
</tr>
<tr>
<td>Construction Date</td>
<td>1958 (spillway raised 1971)</td>
</tr>
<tr>
<td>Owner</td>
<td>Mount Isa Mines</td>
</tr>
<tr>
<td>Dam Length</td>
<td>259m</td>
</tr>
<tr>
<td>Spillway / gates</td>
<td>Primary Spillway: Unlined rock-cut channel on left abutment, with concrete weir inlet control, 77m long, weir crest level RL 3405.53m (MIM datum)</td>
</tr>
<tr>
<td></td>
<td>Auxiliary spillway 1: Unlined by-wash channel, 37m long, crest level RL 3405.77m (MIM datum)</td>
</tr>
<tr>
<td></td>
<td>Auxiliary spillway 2: Unlined by-wash channel, 47m long, crest level RL 3405.80m (MIM datum)</td>
</tr>
<tr>
<td></td>
<td>No gates or scour outlets.</td>
</tr>
<tr>
<td>Height above stream bed</td>
<td>27.5m above lowest downstream toe level</td>
</tr>
<tr>
<td>Storage Capacity</td>
<td>100,000 ML at Full Supply Level</td>
</tr>
<tr>
<td>Full Supply Level (FSL)</td>
<td>3,405.53m (MIM datum)</td>
</tr>
<tr>
<td>Dam Crest Level</td>
<td>3,410.23m (MIM datum)</td>
</tr>
<tr>
<td>Catchment Area</td>
<td>Approximately 1,200km²</td>
</tr>
<tr>
<td>Surface area at FSL</td>
<td>21.9km²</td>
</tr>
<tr>
<td>Supply</td>
<td>Water supply to Mount Isa Water Board, distributed to: Mt Isa Township, Mt Isa Mine, Mica Creek Power Station and Diamantina Power Station.</td>
</tr>
<tr>
<td></td>
<td>Raw water supply direct to Haslingden Station and West Leichhardt Station.</td>
</tr>
<tr>
<td>Spillway capacity</td>
<td>Combined spillway capacity 4,900m³/s (Dam Crest Level)</td>
</tr>
<tr>
<td></td>
<td>1:16,000 AEP flood event</td>
</tr>
<tr>
<td>PMF design event</td>
<td>1:35,000 AEP flood event</td>
</tr>
<tr>
<td></td>
<td>3410.6m (MIM datum) upstream water level</td>
</tr>
<tr>
<td></td>
<td>5,900 m³/s discharge flowrate</td>
</tr>
</tbody>
</table>
3 Purpose, Scope and Responsibilities

3.1 Purpose
The purpose of an Emergency Action Plan is to pre-plan the coordination of necessary actions by Mount Isa Mines Limited (MIM) and to provide timely notification to the Department Natural Resource, Mining and Energy, police, Local Disaster Management Groups and affected persons in the event that a condition at Leichhardt River Dam could develop into an emergency.

This action plan is aimed at addressing the requirements of the “Emergency Action Planning for Referable Dams” Water Supply (Safety and Reliability) Act 2008, as the owner(s) of the referable dam to have an approved EAP for the dam.

3.2 Scope
This document applies to Leichhardt River Dam, Mount Isa, and
- identifies emergency conditions which could endanger the integrity of the dam and which require immediate action
- prescribes procedures which are to be followed in the event of an emergency condition developing

3.3 Responsibilities

3.3.1 General
Mount Isa Mines is the owner and operator of the Leichhardt River Dam. The day to day management of this facility is the responsibility of the Central Engineering Department.

As the dam has no controlled discharge outlets which would be of significance in an emergency event, the primary form of response to emergencies is to provide appropriate and timely notification to people at risk. The Central Engineering Manager shall be responsible for activation and coordination of the Emergency Action Plan, including assessing the risk in accordance with this plan, providing notifications to affected parties appropriate to the level of impact.

The Central Engineering Manager shall keep a record of the distribution and location of the Emergency Action Plan. The Manager shall ensure that all copies are current and that duplicate (uncontrolled) copies are not used in the event of an emergency. Records shall be kept of the locations and status of each copy.

The manual shall be reviewed annually by Mount Isa Mines. Revisions shall be approved by the Central Engineering Manager and shall include the Document Control Details and the Controlled Copy List. A summary listing of all revisions shall be filed in the revision sheet at the front of the manuals.

The controlled copy shall have a watermark on each page clearly indicating that it is the original copy. All copies of the control document shall not have this mark.

3.3.2 Leichhardt River Dam Caretaker (Caretaker), MIM
- Advise Central Engineering Manager, MIM, of an intended absence from the dam
- Follow EAP in time of an emergency
- Monitor and record emergency situation
3.3.3 Central Engineering Manager (CEM), MIM

- Maintain a current notification list
- Ensure Dam Caretaker and the Water Distribution Superintendent is conversant with the EAP
- Review EAP in consultation with the Water Distribution Superintendent at 12 monthly intervals (maximum)
- If during a potential emergency condition the Central Engineering Manager has not been contacted by the Dam Caretaker, the Central Engineering Manager shall
 - attempt to contact the Dam Caretaker
 - enact the EAP if the Dam Caretaker cannot be contacted
- Notify the Director of Dam Safety (DNRME) within 48 hours of activation of EAP
- Monitor emergency condition and evaluate situation on best available information
- Organise a helicopter to visually inspect the dam from the air
- Direct action of Mount Isa Mines personnel during an emergency event to protect property and life to the maximum extent considered possible under the prevailing conditions and with the resources available
- Provide internal advice and status reports during an emergency event by phone in the timeframe as mentioned in Section 4 Emergency Events and Actions or Appendix H page 56 to:
 - Affected residents within 20km of the dam
 - Lake Julius Dam Supervisor, Sunwater
 - Mount Isa Water Board (MIWB)
 - MIM Water Distribution Superintendent (WD)
 - Mount Isa Mines Security Control (MIMSC)
 - Local Disaster Management Group
 - Director of Dam Safety (DNRME)
- Once activation level returns to Stand Down, prepare an Emergency Event Report and forward within 30 business days after the end of the emergency event. The Emergency Event Report must contain:
 - a description of the event
 - instrumentation readings (where appropriate)
 - description of any observed damage
 - photographs
 - details of communication which took place during the emergency
 - comment on the adequacy of the EAP
 - any recommendations or suggested changes to the EAP

3.3.4 Water Distribution Superintendent, MIM

- If during a potential emergency condition the Water Distribution Superintendent has not been contacted by the Central Engineering Manager, the Water Distribution Superintendent shall:
 - attempt to contact the Central Engineering Manager
 - enact the EAP if the Central Engineering Manager cannot be contacted
- On delegation from Central Engineering Manager at the time of an emergency event, act for and on behalf of the Central Engineering Manager during the event, including all roles as listed above.
3.3.5 Local Disaster Management Group (LDMG)

The Chairman of the Local Disaster Management Group shall be responsible for assessing the impact of and managing the response to downstream hazards beyond 20km from the dam site.
4 Emergency Events and Actions

4.1 General
The following events are defined as conditions that could lead to emergency events:

- Significant flow over spillway (≥2.6m depth of flow over spillway), is likely to contribute to downstream flooding
- Extreme flow over spillway (≥3.5m depth of flow over spillway), on the basis that such discharges are likely to contribute to downstream flooding, and further increase may lead to rapid deterioration of the dam integrity
- Earthquake, explosion, landslide or observed structural damage to dam, which could result in dam failure and/or a sudden discharge contributing to downstream flooding
- New area of seepage, significant increase in seepage, or significant unexplained loss of storage contents, which could indicate a potential loss of structural integrity
- Significant movement of the dam wall, indicating potential loss of structural integrity
- Object crashing into the dam or dam catchment, which could lead to contamination of the water supply
- Toxic levels of algae in storage/catchment, which could lead to contamination of the water supply

The Leichhardt River Dam Caretaker undertakes daily visual reviews of the dam, daily measurements of the dam level, and weekly reviews of dam seepage when not overtopping. As such, the Caretaker is likely to be the first person to identify an issue.

Upon identification of any of the above, an activation level of “Alert” shall be recorded. The person identifying the event shall immediately contact the Central Engineering Manager for direction and to manage the event. The sections below describe what actions should be directly implemented in the event of an emergency.

The CEM shall notify the Director Dam Safety (DNRME) within 48 hours of activation of the EAP.

4.2 Emergency Access and Communications
Normal dry weather access is via Leichhardt River Road from Mt Isa, as shown in Appendix A.

During emergencies arising out of flood events, access to the dam visually is only possible by a helicopter in the air.

Normal communications is by telephone to Caretaker’s house or mobile phone.

The Central Engineering Manager shall be responsible for managing the EAP, including notification of affected parties as detailed below and standard messages from Appendix H.

Media releases for an emergency event will be issued from the MIM Site Response Recovery Team (SRRT) through the North Queensland Copper Division (NQCD) Communications Manager.
4.3 Significant flow over spillway

Activation level: **Alert**

Significant flow over the spillway has the potential to pose a flooding risk to assets and persons downstream of the dam. An assessment of the impacts of flooding from the dam is presented in the Failure Impact Assessment Report (SMEC 2010). Key properties identified as being at risk are as follows:

- Warrina Park Picnic Area is located approximately 0.5km downstream of the dam wall, in close proximity to the watercourse. For the purpose of risk assessments the PAR was estimated at 9. It is noted that further to the FIA Report, overnight camping is not permitted in this area.

- Haslingden Station is located approximately 1.8km downstream of the dam wall. The homestead is offset approximately 300m from the centreline of the watercourse, and elevated approximately 5m above it. A rapid discharge from the spillway would affect the homestead around 0.5 to 1 hour later. The FIA Report assessed that the property would not be inundated by a Dam Crest Flood.

- West Leichhardt Station is located approximately 13km downstream from the dam. The homestead is offset approximately 250m from the centreline of the watercourse, and approximately 4m above it. A rapid discharge from the spillway would affect the homestead around 1 to 2 hours later. The FIA Report assessed that the property would be inundated by a Dam Crest Flood.

- Lake Julius Dam is located approximately 70km downstream from the dam. A rapid discharge from Leichhardt River Dam would affect Lake Julius around 5 to 6 hours later. Discharge from Leichhardt River Dam under flooding and/or dam break events is not expected to affect the Lake Julius Dam integrity, however rising waters may affect the safety of operators on or near the water’s edge.

- Four additional properties are located from 100km to 260km downstream from the dam, with the potential to be affected by flooding in the Leichhardt River watercourse.

In addition to the abovementioned properties, it should be noted that the dam is frequently used by recreational watercraft. There is also a youth camp (Isa Youth Camp, formerly known as Lions Youth Camp) located north of the Dam, and whilst the campsite would be unaffected by dam failure, the access road passes downstream of the dam and spillway.

As dam overflow is one of several factors affecting flooding of Lake Julius and properties downstream thereof, assessing the downstream flooding hazards is the responsibility of the Local Disaster Management Group. This EAP is aimed at providing timely information to the Local Disaster Management Group, affected stakeholders and emergency services so as to assist them in assessing the overall hazards and responding accordingly.

The likely causes of a significant flow over the spillway are related to the annual Wet Season and rainfall in the Leichhardt River catchment area. The catchment area is 1,200km² and is the only source of re-supply for the dam. Based on discussions with the Dam Operators, the dam level is normally below full supply capacity, however may overtop for several weeks at a time every 5 years or so. The highest discharge in memory overtopped the spillway by 1.25m.

The level of response to floodwater discharge is dependent on the discharge flow rate. For simplicity, response levels are presented in terms of depth of flow over the spillway. Any measurable flow over the spillway will trigger an activation level of “Alert” in the Emergency Action Plan.

From the FIA Report, a 1:100 AEP flood event corresponds to a theoretical outflow 1,428m³/s, with the dam level at 2.6m above the main spillway. Such discharges are not expected to pose a significant risk of damage to the dam, but are likely to be contributing to downstream flooding. As such, a dam level of 2.6m above the
spillway can be used as marking a significant level of flow appropriate for triggering a “Lean Forward” activation level in the Emergency Action Plan.

From the FIA Report, a 1:1,000 AEP flood event corresponds to a theoretical outflow 2,610 m³/s, with the dam level at 3.5m over the main spillway. This represents approximately 50% of the theoretical spillway capacity (4,900 m³/s) and is significantly above any known discharge levels. Whilst the dam can theoretically withstand water levels up to the dam crest (4.70m above the spillway), a dam level of 3.5m above the spillway is considered an appropriate level of flow for triggering a “Stand Up” activation level in the Emergency Action Plan.

From the FIA Report, a 1:16,000 AEP flood event corresponds to a theoretical outflow of 4,900 m³/s, with the dam level at the dam crest (ignoring height of parapet). The dam is not expected to be able to withstand flows over this level as overtopping would quickly scour the dam embankment leading to progressive structural failure.

Further details in relation to the extent and findings of the flood modelling from the FIA Report are presented in Appendix B. Discharge and Storage Curves for various storm events are presented in Appendix D.

4.3.1 Low Flow over Spillway (less than 2.6m depth of flow)

Activation level: Alert

A trigger point of 2.6m above spillway is set as a reference marker that water levels are significantly higher than recent records. Whilst discharges up to this level may lead to flooding downstream, the dam is considered to be well within its design limits.

Once the spillway begins overtopping:

The Leichhardt River Dam Caretaker shall:

- Visually observe flood levels, record situation, record rainfall and report to the Central Engineering Manager every 24 hours
- Photograph flows at suitable intervals
- Inspect the dam as soon as safe access is possible after the event

The Central Engineering Manager shall:

- Liaise with the Leichhardt River Dam Caretaker or otherwise monitor the dam levels
- Notify LDMG of spillway levels, with updates every 24 hours.
- Notify MIMSC of spillway levels, with updates every 24 hours.
- Updates shall continue until water levels begin to recede
- Sample notification messages are presented in Appendix H

4.3.2 Significant Flow over Spillway (2.6m to 3.5m depth of flow and rising)

Activation level: Lean Forward
Spillway flow levels of greater than 2.6m represent an event significantly higher than recent records, and whilst the dam is still within its theoretical capacity, a greater level of vigilance is appropriate. Under such flood events, it is likely that the access road to the dam would be cut by floodwaters. Telecommunications may or may not be affected, depending on the nature of the storm event.

If flow over the spillway is more than 2.6m and rising then:

The Leichhardt River Dam Caretaker shall:
- Visually observe flood levels, record situation, record rainfall and report to the Central Engineering Manager every 8 hours
- Photograph flows at suitable intervals
- Inspect the dam as soon as safe access is possible after the event

The Central Engineering Manager shall:
- Liaise with the Leichhardt River Dam Caretaker or otherwise monitor the dam levels
- Notify LDMG of spillway levels, with updates every 8 hours.
- Notify key contacts on properties within 20km downstream of the dam and Lake Julius Storage Supervisor, with updates every 8 hours.
- Notify MIMSC, with updates every 8 hours.
- Notify DNRME that activation level has moved to “Lean Forward”
- Updates shall continue until water levels begin to recede, or dam levels exceed 3.5m over the spillway
- Sample notification messages are presented in Appendix H

4.3.3 Significant Flow over Spillway (greater than 3.5m depth of flow and rising)

Activation level: **Stand Up**

A trigger point of 3.5m above the spillway is set as a reference marker that water levels are significantly above any historical levels. Discharge flow rates are approximately half of the spillway capacity, and should the spillway capacity be exceeded then the integrity of the dam is likely to be compromised.

Under such flood events, it is likely that the access road to the dam would be cut by floodwaters. Telecommunications may or may not be affected, depending on the nature of the storm event.

The Caretaker’s residence is located away from and uphill of the dam wall. It is anticipated that the Caretaker will be able to remain at the site providing updates to the CEM through severe flood events.

If flow over the spillway is more than 3.5m and rising then:

The Leichhardt River Dam Caretaker shall:
- Confirm with the CEM regarding the intent to move into “Stand Up” activation level.
- If safe, visually monitor dam levels at suitable intervals, including photographic records.
- Maintain regular communication with the CEM to confirm Caretaker’s safety
If conditions are expected to be prolonged more than 72 hours or other safety issues arise, liaise with CEM to arrange for evacuation via helicopter.

The Central Engineering Manager shall:
- Confirm with the Leichhardt River Caretaker regarding the intent to move into “Stand Up” activation level.
- Liaise with the Leichhardt River Dam Caretaker to confirm the safety of the Caretaker and any other persons on site.
- Notify Emergency Services of intent to move into “Stand Up”, and advise in relation to the status of the Caretaker and any other persons on site.
- Notify MIMSC of intent to move into “Stand Up”, and advise in relation to the status of the Caretaker and any other persons on site.
- Notify LDMG of spillway levels, and the intent to move into “Stand Up” activation level.
- Notify key contacts on properties within 20km downstream of the dam and Lake Julius Storage Supervisor.
- Notify DNRME of spillway levels, and the intent to move into “Stand Up” activation level.
- Maintain communications with MIMSC, LDMG, and affected residents every 8 hours.
- Sample notification messages are presented in Appendix H

The Chairman of the Local Disaster Management Group shall:
- Identify the impact of floodwaters on residents further than 20km downstream of the dam, and coordinate appropriate response measures.
- Liaise with the CEM

4.3.4 Flow over Spillway Receding

Activation level: **Stand Down**

If rainfall at the dam has ceased and flood levels are found to be receding over 3 consecutive hourly readings, then the impacts of flooding may assume to have peaked and the benefit of further warnings to properties is of limited value. In this instance:

The Leichhardt River Dam Caretaker shall:
- Continue to visually observe flood levels, record situation, record rainfall and report to the Central Engineering Manager every 24 hours until the spillway is no longer overtopping
- Photograph flows at suitable intervals
- Inspect the dam as soon as safe access is possible after the event

The Central Engineering Manager shall:
- Liaise with the Leichhardt River Dam Caretaker or otherwise monitor the dam levels
• Notify all previously contacted parties of the intent to move activation level to Stand Down.
• Sample notification messages are presented in Appendix H
• Prepare an Emergency Event Report and forward within 30 business days after the end of the emergency event.

4.4 Potential structural damage to dam
A number of events have the potential to cause significant structural damage to the dam including:
• Earthquakes, placing excessive stress on the dam structure
• Landslide along the abutment or dam wall, damaging or undercutting the dam structure
• Landslide along the reservoir rim, displacing a volume of water that leads to a sudden rise in the dam level and potential flooding downstream
• Uncontrolled seepage leading to piping failure through the dam wall or abutments
• Flood levels overtopping the dam wall.

Signs that the structural integrity of the dam may have been compromised include:
• Observation of significant areas of damage on the upstream dam face or walkway, such as new cracking in the concrete facing
• Significant amounts of scour on the downstream face
• Unexplained loss of storage contents
• Unexplained eddies in proximity to the dam wall, indicating potential piping failure
• Unexpected changes to the levels of seepage observed downstream of the dam
• Significant movement of the dam wall

The effects of dam failure is dependent on the volume of water stored at the time of failure. From the 2010 Failure Impact Assessment Report, the estimated incremental Population At Risk from inundation relating to dam failure at Full Storage Capacity (Sunny day Dambreak) is 30 people, including 9 persons at Warrina Park, 6 people at West Leichhardt Station, and 15 people at various settlements downstream of Lake Julius.

The estimated incremental Population at Risk from inundation relating to dam failure during a 1:16,000 flood event (Dam Crest Flood) is 35 people, including 3 persons at Haslingden Station, and 32 people at various settlements downstream of Lake Julius.

4.4.1 Events considered unlikely to pose risk of structural failure
Reference is made to the Leichhardt River Dam Comprehensive Inspection Report (AECOM 2013). This report identified that the dam is in sound condition, but has a number of issues that require attention including:
• Some of the vertical joints on the face slab have deteriorated and should be repaired. Ongoing monitoring of the face slab joints should continue as part of routine inspections.
• Rock protection is installed on the downstream face, and has irregular grading of material. There are several locations where large rock has not interlocked with smaller material and is leading to rill
erosion. These locations should be monitored in future inspections. Should erosion become excessive it is recommended that the area be backfilled and with a suitable material and compacted.

- The condition of the spillway has not deteriorated noticeably since the last comprehensive inspection. Continued monitoring of some potentially unstable rock above the right abutment of the control crest is considered necessary as a rock fall could result in damage to the crest and some uncontrolled loss of storage.

Seepage through the dam wall

Reference is made to GHD’s design drawings for the dam 4509-5 and 4509-7, which indicate the dam being constructed from rock fill founding on bedrock, with batter slopes of 1:1 1/4. Generally speaking, it is expected that a significant flow velocity would be required to erode sufficient material to lead to progressive piping failure of rock fill. However, as no specific details are available in relation to the type, size or condition of the rock fill, specific limits as to an acceptable seepage rate cannot be accurately calculated. Accordingly it is proposed that a suitable trigger for activating the EAP would be observing a significant increase in seepage flow without a corresponding rise in the dam water level.

Seepage through the dam is currently being monitored by measuring the flow rate in the watercourse, through a V-notch cut into the bedrock approximately 600m downstream of the dam wall. This measurement is undertaken on the assumption that all flow in the watercourse can be attributed to seepage through the dam wall, and is only applicable when the spillway is not overtopping. Flow rate is measured on a weekly basis by the Caretaker. In general, seepage is only identified when the dam level is close to Full Supply Level.

Damage to the concrete facing

The concrete facing on the upstream face of the dam provides the primary water retention barrier. GHD drawing 4509-7 identifies this facing as 4 inch thick Gunite, anchored to the rock fill with A.R.C 5/8 inch rods embedded 4 feet into the rock fill. The Gunite is divided into 24’ x 20’ panels, with rubber water stops central to the facing slab. 1” square cork joint sealants are applied above the rubber water stops, primarily to protect the water stop from degradation.
The condition of the cork sealant is important to protect the underlying water stop, but should in itself not be seen as a trigger for activation of the EAP.

Suitable triggers relating to the condition of the concrete facing would include:

- development of new cracks (not at existing joint locations),
- detection of a significant increase in seepage without a corresponding increase in dam level
- detection of an unexplained eddy in proximity of the dam wall

Damage to the downstream embankment

The existing drawings for the dam do not indicate any capping to the downstream embankment, however a range of grading including fine particles is visible along the finished surface. As noted in the 2013 Comprehensive Inspection Report, a degree of large rock has not interlocked with smaller material and is leading to rill erosion. Furthermore, an accumulation of large rocks at the toe of the embankment indicate that a degree of erosion may be present leading to dislodgement of these rocks.

Given there is no structural facing to the embankment, a significant loss of material would be required to lead to global instability. Proposed triggers for activating the EAP include:

- Identification of localised erosion deeper than 1m over an area of greater than 10m².
- Identification of new areas of rill erosion or slip failure.
Movement of the dam wall

A key indicator of degradation of the rock fill would be significant movement of the dam wall. Small movements may be attributed to thermal changes or settlement of fill material.

A series of survey monitoring points along the dam wall are being monitored. A trend of horizontal movement is apparent in the order of 40mm since 1969. A trend of vertical movement is also apparent in the order of 30mm since 1966.

Proposed triggers for activating the EAP include:

- Lateral displacement across a crack or movement joint of greater than 20mm.
- Movement of any part of the dam of more than 20mm in one year

4.4.2 Events which may pose risk of structural failure

Activation level: Lean Forward

The following items indicate that the integrity of the dam may have been compromised, and requires precautionary measures to be undertaken:

- Any act of terrorism or sabotage that may have affected the structure
- Earthquakes, with magnitude of over 4 on the Richter scale within 500km of the site. This may be approximated as an event which will be clearly felt by persons on site (or in Mount Isa).
- Seepage measurements of more than 5 litres per second and more than 20% increase in seepage over 24 hours without a corresponding increase in dam level.
- Development of distinct new cracks in the concrete facing (not at existing joint locations),
- Detection of an unexplained eddy in proximity of the dam wall
- Identification of localised erosion on the downstream embankment deeper than 1m over an area of greater than 10m².
- Identification of new areas of rill erosion or slip failure on the downstream embankment.
- Lateral displacement across a crack or movement joint of greater than 20mm.
- Movement of any part of the dam of more than 20mm in one year

Following identification of one or more of the above items, a potential risk of structural failure shall be noted and the following actions undertaken:

The Leichhardt River Dam Caretaker shall:

- As feasible, inspect all accessible areas of the dam to identify the extent of any damage, including new cracking, new seepage, deformation, or spalling of concrete on the dam face or abutments. Damage should be recorded in terms of notes estimating extent of damage as well as photographs.
- Continue to monitor and record the situation at suitable intervals until otherwise notified by the CEM

The Central Engineering Manager shall:

- Liaise with the Leichhardt River Dam Caretaker or otherwise monitor the dam
- Notify LDMG of the potential structural risk
- Notify MIMSC of the potential structural risk
- Notify key contacts on properties within 20km downstream of the dam
- Notify Director Dam Safety (DNRME) within 48 hours of activating the EAP
- Notify MIWB of potential structural risk
- Sample notification messages are presented in Appendix H
- Engage a detailed engineering assessment as soon as practical.

Activation level shall remain at Lean Forward until either a structural engineering review confirms the dam integrity has not been compromised, or 48 hours has passed without further increase in damage.

Prepare an Emergency Event Report at Stand Down level and forward within 30 business days after the end of the emergency event.

4.4.3 Potential indicators of imminent structural failure

Activation level: Stand Up

The following items indicate that the integrity of the dam is likely to have been compromised, and requires immediate emergency measures to be undertaken:

- Earthquakes, with magnitude over 6 on the Richter scale within 250km of the site. This may be approximated as an event which causes significant damage to most buildings, and is felt as strong shaking by persons on site (or in Mount Isa).
- Seepage measurements of more than 50 litres per second or a visibly increasing rate of seepage concurrent with a decrease in dam level.
- Observation of major areas of damage to the dam face, such as dislodgement of sections of concrete facing or new cracks over 5mm in width
- Significant areas of landslip or erosion on the downstream embankment deeper than 2m over an area of greater than 20m².
- Lateral displacement across a crack or movement joint of greater than 50mm.

Following identification of one or more of the above items, an imminent risk of structural failure shall be noted and the following actions undertaken:

The Leichhardt River Dam Caretaker shall:

- Instruct any visitors to leave, including persons at the Warrina Park Picnic Area, Isa Youth Camp.
- As far as possible (without endangering themselves) advise any recreational watercraft on the dam to leave the area.
- Move to a safe location and as feasible continue to monitor visible areas of the dam to identify the extent of any damage, including new cracking, new seepage, deformation, or spalling of concrete on the dam face or abutments. Damage should be recorded in terms of notes estimating extent of damage as well as photographs.
- Continue to monitor and record the situation at suitable intervals until otherwise notified by the CEM

The Central Engineering Manager shall:

- Liaise with the Leichhardt River Dam Caretaker or otherwise monitor the dam
• Notify Emergency Services of the imminent risk of dam failure
• Notify LDMG of the imminent risk of dam failure, with progressive updates on an hourly basis.
• Notify key contacts on properties within 20km downstream of the dam of the imminent risk of dam failure.
• Notify Lake Julius Storage Supervisor of the imminent risk of dam failure
• Notify MIMSC of the imminent risk of dam failure, with progressive updates on an hourly basis.
• Notify MIWB of the imminent risk of dam failure, with progressive updates on an hourly basis.
• Sample notification messages are presented in Appendix H
• Notify Director Dam Safety (DNRME) within 48 hours of activating the EAP.
• Engage a detailed engineering assessment as soon as practical.

Activation level shall remain at Stand Up until either a structural engineering review confirms the dam integrity has not been compromised, or 48 hours has passed without further increase in damage.

Prepare an Emergency Event Report at Stand Down level and forward within 30 business days after the end of the emergency event.

4.5 Potential contamination of dam

Contamination of the dam potentially affects the environment and users of the water including

• recreational users,
• Haslingden and West Leichhardt Stations, drawing raw water from the dam.
• MIWB, supplying treated water to Mt Isa Township, Mount Isa Mines, Mica Creek Power Station and Diamantina Power Station.

Early containment of the contamination and notification of the appropriate emergency services is critical. Any operations undertaken by MIM or Contractors which have the potential to contaminate a watercourse must include provision of a suitable spill collection kit and environmental management plan.

4.5.1 Potential discharge of contaminant into the dam or dam catchment

Activation level: Stand Up

Likely causes of a contamination include a vehicle or boat accident, with the potential contaminants limited to the contents of fuel on board. Other less likely potential incidents include plane crash or failure of maintenance plant in the dam catchment.

In the event that an incident occurs which contaminates or has the potential to contaminate the water supply:

The Leichhardt River Dam Caretaker / person first identifying hazard shall:

• Contact emergency services as soon as possible
• Identify the hazardous substance if possible
• Contact CEM
• Take reasonable steps to isolate the spill or contaminant from the storage and prevent further contamination
• If storage is contaminated, shut off the outlet pipe valve at the pump house.
The Central Engineering Manager shall:

- Liaise with the Leichhardt River Dam Caretaker or otherwise monitor the hazard
- Notify MIMSC
- Notify key contacts on properties within 20km downstream of the dam and MIWB of the contamination and decision to cut of water supply.
- Sample notification messages are presented in Appendix H
- Notify Director Dam Safety (DNRME) within 48 hours of activating the EAP.

Prepare an Emergency Event Report and forward within 30 business days after the end of the emergency event.

Activation level shall remain at Stand Up until the emergency response team has confirmed that the contamination has been controlled.

4.5.2 Toxic algae bloom in storage/catchment

Activation level: Stand Up

The dam is available for recreation use, is supplied to Haslingden and West Leichhardt Stations as raw water for stock watering, is supplied to Isa Youth Camp as raw water and supplied to MIWB for treatment as potable water. As such, algae blooms in the dam have the potential to affect a range of users. Blue-green algae (Cyanobacteria) is of particular threat due to the potential toxins produced.

Water quality is routinely tested by MIM. Recreation use on the Lake and treatment of Potable Water is managed by MIWB. Advisory signage relating to the dam water quality and suitability for recreational use is located at the boat ramp and maintained by MIWB.

Should a high reading for toxins be identified, then:

The Leichhardt River Dam Caretaker / person first identifying hazard shall:

- Contact CEM
- Take reasonable steps to estimate the extent of any algae blooms, including photographic records. Note – the presence of toxins in the algae cannot be confirmed outside of a laboratory analysis, but understanding the extent and movements of algae blooms may aid in supplementing laboratory findings.

The Central Engineering Manager shall:

- Liaise with the Leichhardt River Dam Caretaker and Water Quality Team or otherwise monitor the hazard
- Notify key contacts on properties within 20km downstream of the dam and MIWB of the contamination and decision to cut of water supply.
- Notify Isa Youth Camp of the hazard and instruct them to cease using the water
- Notify MIMSC
- Sample notification messages are presented in Appendix H
- Notify Director Dam Safety (DNRME) within 48 hours of activating the EAP.

Activation level shall remain at Stand Up until an environmental assessment has determined the contamination to be of no further threat.

For more information see the Queensland Government website:

Sunwater Website:
5 Supporting Documents and Reference Material

The following supporting documents form part of the Emergency Action Plan:

- Queensland Dam Safety Management Guidelines (February 2002)
- ANCOLD Guidelines on Dam Safety Management (August 2003)
- Mines Regulations Act 1964 – 1983
- Metalliferous Mining Regulations 1995
- Mining and Quarrying Safety and Health Act 1999
- Mining and Quarrying Safety and Health Regulations 2001.
- 2010 Failure Impact Assessment.
- Leichhardt River Dam Comprehensive Inspection Report (AECOM 2013)
- GHD’s design drawings for the dam 4509-5 and 4059-7
In flood events, the road would be cut in three locations: Moondarra Crossing, Davis Road and Stoney Creek.

During flood the dam wall is only accessible by air.
Figure A2. – Google Earth Map of Lake Moondarra
Figure A3. – Google Earth Map of Leichhardt River Dam V-notch

Figure A4. – Google Earth Map of Lake Moondarra Pump house and Caretaker’s Residence
APPENDIX B FLOOD INUNDATION ASSESSMENT
NOTE REGARDING INUNDATION MAPPING

A Failure Impact Assessment Report was undertaken by SMEC in 2010. This assessment included a 1-dimensional flow analysis of the Leichhardt River Watercourse. Whilst this assessment appears appropriate for undertaking a high-level review of the impacts of dam failure on Warrina Park, Haslingden Station and West Leichhardt Station, insufficient information is available at this time to produce meaningful inundation maps given the irregular topography along the water course.

Reference is made to Section 9.5 of Emergency Action Planning for Referrable Dams (DNRME, 2013) which notes "Where the number of properties potentially affected and PAR is limited, detailed flood mapping may not be necessary. It may be sufficient to just identify where the particular dwellings are and the circumstances in which they may be affected, in the body of the EAP."

EXTRACTS FROM FIA REPORT (SMEC 2010)

SUMMARY

It was found that the Population at Risk for Sunny Day failure of the dam is 30 persons.
In the event of a Dam Crest Flood, triggering failure of the dam, the incremental population at Risk is 35 persons.
The Population at Risk is spread over a 275 km reach downstream of Leichhardt River Dam and includes Warrina Park, Haslingden station, West Leichhardt Station, Kajabbi and three other settlements downstream of Lake Julius. In the event of failure, flood waters would peak in the Haslingden station approximately 40 minutes to 1.0 hours later. The failure of Leichhardt River Dam would be likely to result in minor damage to West Leichhardt Station. In the event of failure, flood water would peak in the West Leichhardt station approximately 1.25 to 1.5 hours later.
The failure of the dam would not trigger failure of Lake Julius Dam.
The current Spillway capacity was found to be 4900 m3/s which equates to a 1 in 16,000 AEP flood event. The spillway capacity is currently 86% of the Acceptable Flood Capacity and will need to be upgraded to pass 5900 m3/s or 100% of the AFC prior to the year 2035.

DAM FAILURE ANALYSIS

For the dam failure analysis, a Mike 11 dam break model was adopted with inflow hydrographs based on the hydrology described in previous chapters. MIKE11, developed by Danish Hydraulic Institute, Water and Environment, is used for the simulation of 1-dimensional flow analysis including dam break simulation. The river reaches investigated in this study initially covered the Leichhardt River and its floodplain extending downstream of Leichhardt River Dam to the Lake Julius Dam. Following a review of the report by DNRME, the model was extended approximately 200 km downstream of Julius Dam, to ensure that all Population at Risk would be identified.

In accordance with the Guidelines on Failure Impact Assessment, Table 1, the Dam Crest Flood was simulated assuming the Dam Crest Flood inflow to the dam with 10yr ARI concurrent tributary inflows downstream of the dam. The longitudinal water level profile for different failure scenario has been presented in Figure 15.
WARNING TIMES
The rate of rise of floodwaters at various locations downstream Leichhardt River Dam in a Sunny Day and Dam Crest flood failure scenarios is shown in Figure 16 and Figure 17 which show the time of rise of flood water at the four following locations:

- At the Leichhardt River Dam
- 1.85 km downstream of the Leichhardt River Dam (Haslingden station)
- 13.0 km downstream of the Leichhardt River Dam (West Leichhardt station)
- Lake Julius Dam

In a Sunny Day failure, following failure of the Leichhardt River Dam, flood waters would rise rapidly at Haslingden Station, peaking approximately 1 hour after commencement of failure. The water level would peak at West Leichhardt Station, 13 km downstream, approximately 2 hours after commencement of failure. The flood peak would take approximately 7.0 hours to reach Lake Julius Dam. In a Dam Crest flood with failure of the dam, the dam failure was initiated approximately 9.5 hours after the onset of heavy rainfall. In this circumstance, the peak flood level at Lake Julius Dam was reached approximately 5 hours after failure.
Figure 16: Flood Travel Time – Sunny Day Failure

Figure 17: Flood Travel Time – Dam Crest Flood Failure
CONSEQUENCES
The Incremental Population at Risk (PAR) was determined by inspection of the aerial photography of the floodplain downstream of the dam. Buildings located within the flood extent or properties where the depth of floodwater exceeds 0.3 m are considered to lie within the affect zone. The Warrina Park, Haslingden Station and West Leichhardt Station are the possible infrastructure and localities that are situated downstream of the Leichhardt River Dam. In addition, four small settlements were identified downstream of Lake Julius. The furthest downstream of these is approximately 200 km downstream of Lake Julius. These properties may potentially be occupied during a dam failure event and therefore, population at risk exists.

In the Sunny Day failure scenario, it is estimated that the PAR is 30 persons. In the DCF with failure, the incremental PAR would be 35 persons.

The failure of the dam would not trigger failure of Lake Julius Dam.

HYDROGRAPHS
Figure C-4: Dam Crest Flood Failure Water Level
APPENDIX C WEATHER INFORMATION (FLOOD WARNING)
USING THE INTERNET – www.bom.gov.au

Click on this link

Click on QLD for Flood Warning

Queensland Flood Warning information
RADAR IMAGES

Place cursor over AUSTRALIA then click Radar Images

Click on Mount Isa to view Mount Isa Radar Loop
RAINFALL AND RIVER CONDITIONS

Weather for Wednesday 24 February

Sydney
Now: 28.9° C
Max: 32° C

Melbourne
Now: 24.9° C
Max: 29° C

Brisbane
Now: 29.7° C
Max: 33° C

Perth
Now: 23.7° C
Max: 26° C

Adelaide
Now: 25.2° C
Max: 30° C

Perth
Now: 18.7° C
Max: 24° C

Canberra
Now: 34.8° C
Max: 36° C

Darwin
Now: 31.3° C
Max: 34° C

Queensland Rainfall and River Conditions

View the current warnings for Queensland

Display on map:
- River Conditions
- Minor Rainfall
- Major Rainfall
- Rainfall Since Tar
- Last 11 Hour Rainfall

About data:
Note: Data represents uncorrected data from automatic gauging stations.
Please remember to return page to the data is up to date.

Zoom in to:
- Gulf & Peninsula
- Darling River
- Murray & Inland
- Gwydir to Moreton
- Maranoa to Gold Coast
- North Coast
- East Coast
- Murray River
- Major
- Water Divisions
- South West
- North West
- Moreton River

Zoom out to:
- Queensland
- Australia

Other links:
- Daily A River / Flood Forecast Rainfall
APPENDIX D DISCHARGE AND STORAGE CURVES
DISCHARGE AND STORAGE CURVES (BASED ON FAILURE IMPACT ASSESSMENT REPORT (SMEC, 2010))

Figure D1 – Stage / storage relationship
Figure D2 – Stage / discharge relationship
<table>
<thead>
<tr>
<th>Dam water level (m) (MIM datum)</th>
<th>Depth over main spillway (m)</th>
<th>Storage (ML)</th>
<th>Discharge (m³/s)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>3405.5</td>
<td>0.0</td>
<td>99,000</td>
<td>0</td>
<td>Spillway (Full Supply Level)</td>
</tr>
<tr>
<td>3406.3</td>
<td>0.7</td>
<td>106,076</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>3406.6</td>
<td>1.0</td>
<td>109,106</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>3407.2</td>
<td>1.6</td>
<td>120,017</td>
<td>642</td>
<td></td>
</tr>
<tr>
<td>3407.8</td>
<td>2.3</td>
<td>130,927</td>
<td>1132</td>
<td></td>
</tr>
<tr>
<td>3408.1</td>
<td>2.6</td>
<td>136,383</td>
<td>1433</td>
<td>1:100 AEP Storm Event*</td>
</tr>
<tr>
<td>3408.7</td>
<td>3.2</td>
<td>151,294</td>
<td>2164</td>
<td>1:500 AEP Storm Event*</td>
</tr>
<tr>
<td>3409.0</td>
<td>3.5</td>
<td>158,749</td>
<td>2613</td>
<td>1:1000 AEP Storm Event*</td>
</tr>
<tr>
<td>3409.6</td>
<td>4.1</td>
<td>173,660</td>
<td>3672</td>
<td></td>
</tr>
<tr>
<td>3410.2</td>
<td>4.7</td>
<td>190,481</td>
<td>4901</td>
<td>Crest; 1:16,000 AEP Storm Event*</td>
</tr>
<tr>
<td>3410.6</td>
<td>5.1</td>
<td>201,367</td>
<td>5,747</td>
<td></td>
</tr>
<tr>
<td>3410.7</td>
<td>5.2</td>
<td>203,334</td>
<td>5,900</td>
<td>1:35,000 AEP Storm Event*</td>
</tr>
<tr>
<td>3410.8</td>
<td>5.3</td>
<td>208,429</td>
<td>6,296</td>
<td></td>
</tr>
<tr>
<td>3411.1</td>
<td>5.6</td>
<td>217,403</td>
<td>7,043</td>
<td></td>
</tr>
<tr>
<td>3411.8</td>
<td>6.2</td>
<td>237,306</td>
<td>8,647</td>
<td></td>
</tr>
<tr>
<td>3412.7</td>
<td>7.1</td>
<td>269,528</td>
<td>11,179</td>
<td></td>
</tr>
<tr>
<td>3414.2</td>
<td>8.7</td>
<td>327,827</td>
<td>15,827</td>
<td></td>
</tr>
<tr>
<td>3415.0</td>
<td>9.5</td>
<td>350,000</td>
<td>18,375</td>
<td></td>
</tr>
</tbody>
</table>

Figure D3 – tabulated values

* AEP storm events represent the expected system response for a theoretical storm occurring across the most adverse temporal distribution, occurring when the dam is at Full Supply Level prior to the storm.
APPENDIX E MODIFIED MERCALLI SCALE
MODIFIED MERCALLI SCALE

<table>
<thead>
<tr>
<th>No.</th>
<th>Descriptive Term</th>
<th>Description</th>
<th>Acceleration (cm/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Imperceptible</td>
<td>Not felt. Marginal and long-period effects of large earthquakes.</td>
<td><1</td>
</tr>
<tr>
<td>II</td>
<td>Very Slight</td>
<td>Felt by persons at rest, on upper floor, or favourably placed.</td>
<td>1-2</td>
</tr>
<tr>
<td>III</td>
<td>Slight</td>
<td>Felt indoors. Hanging objects swing. Vibration like passing of light trucks. Duration estimated. May not be recognised as an earthquake.</td>
<td>2-5</td>
</tr>
<tr>
<td>IV</td>
<td>Moderate</td>
<td>Hanging objects swing. Vibration like passing of heavy trucks or sensation of a jolt like a heavy ball striking the walls. Standing motor cars rock. Windows, dishes, doors rattle. Glasses clink, crockery clashes. In upper range of IV, wooden walls and frames creak.</td>
<td>5-10</td>
</tr>
<tr>
<td>V</td>
<td>Rather Strong</td>
<td>Felt outdoors; direction estimated. Sleepers waken. Liquids disturbed, some spilled. Small unstable objects displaced or upset. Doors swing, close, open. Shutters, pictures move. Pendulum clocks stop, start, change rate.</td>
<td>10-20</td>
</tr>
<tr>
<td>VIII</td>
<td>Destructive</td>
<td>Steering of motor cars affected. Damage to masonry C: partial collapse. Some damage to masonry B, none to masonry A. Fall of stucco, some masonry walls. Twisting, fall of chimneys factory stacks, monuments, towers, elevated tanks. Frame houses move on foundations if not bolted down; loose panel walls thrown out. Decayed piling broken off. Branches broken from trees. Changes in flow or temperature of springs and wells. Cracks in wet ground, on steep slopes.</td>
<td>100-200</td>
</tr>
<tr>
<td>IX</td>
<td>Devastating</td>
<td>General panic. Masonry D destroyed; masonry C heavily damaged, sometimes with complete collapse; masonry B seriously damaged. Frame structures, if not bolted, shifted off foundations. Frames cracked. Serious damage to reservoirs. Underground pipes broken. Conspicuous cracks in ground. In alleviated areas sand, mud ejected, earthquake fountains, sand craters.</td>
<td>200-500</td>
</tr>
<tr>
<td>X</td>
<td>Annihilating</td>
<td>Most masonry and frame structures destroyed with their foundations. Some well-built wooden structures and bridges Destroyed. Serious damage to dams, dykes, and embankments. Large landslides. Water thrown on banks of canals, rivers, lakes, etc. Sand and mud shifted horizontally on beaches and flat land. Rails bent slightly.</td>
<td>500-1000</td>
</tr>
</tbody>
</table>
Disaster Rails bent greatly. Underground pipelines completely out of service.

Major Disaster Damage nearly total. Large rock masses displaced. Line of sight and level distorted. Objects thrown into the air.

<table>
<thead>
<tr>
<th>XI</th>
<th>Disaster</th>
<th>Description</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disasters</td>
<td>Disaster Rails bent greatly. Underground pipelines completely out of service.</td>
<td>1000-2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XII</th>
<th>Major Disaster</th>
<th>Description</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Damage nearly total. Large rock masses displaced. Line of sight and level distorted. Objects thrown into the air.</td>
<td>>2000</td>
<td></td>
</tr>
</tbody>
</table>

Categories of Masonry

Masonry A:
- Good workmanship, mortar and design; reinforced, especially laterally, and bound together using:
 - Steel
 - Concrete etc.
 - Designed to resist lateral forces

Masonry B:
- Good workmanship and mortar; reinforced, but not designed in detail to resist lateral forces.

Masonry C:
- Ordinary workmanship and mortar; no extreme weaknesses like failing to tie in at corners, but neither reinforced nor designed against horizontal forces.

Masonry D:
- Weak materials such as:
 - Adobe
 - Poor mortar
 - Low standards or workmanship
 - Weak horizontally
APPENDIX F EMERGENCY RESOURCES
EMERGENCY RESOURCES

In an emergency situation, equipment, supplies and construction personnel will likely be needed on short notice. The table below lists general emergency resources, and also indicates how to access them.

<table>
<thead>
<tr>
<th>Item</th>
<th>Contact/Telephone</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Remploy 4743 4190</td>
<td>101 Duchess Road Mt Isa</td>
</tr>
<tr>
<td>Front end Loader</td>
<td>Remploy 4743 4190</td>
<td>101 Duchess Road Mt Isa</td>
</tr>
<tr>
<td>Excavators</td>
<td>Remploy 4743 4190</td>
<td>101 Duchess Road Mt Isa</td>
</tr>
<tr>
<td>Sand & Gravel</td>
<td>Remploy 4743 4190</td>
<td>101 Duchess Road Mt Isa</td>
</tr>
<tr>
<td>Sandbags</td>
<td>IDC Store 4744 2350</td>
<td>Mount Isa Mines</td>
</tr>
<tr>
<td>Pumps</td>
<td>Coates Hire 47491902</td>
<td>Barkly Highway Mt Isa</td>
</tr>
<tr>
<td>Labourers’</td>
<td>Remploy 4743 4190</td>
<td>101 Duchess Road Mt Isa</td>
</tr>
<tr>
<td>Tradesmen</td>
<td>Schmider 0403 045 588</td>
<td>Commercial Road Mt Isa</td>
</tr>
<tr>
<td>Pipe</td>
<td>One Steel 4743 4089</td>
<td>45 Commercial Road Mt Isa</td>
</tr>
<tr>
<td>Helicopter</td>
<td>NQ Rescue Helicopter 4743 0937</td>
<td>Mount Isa Airport</td>
</tr>
</tbody>
</table>
Data Record – Weekly Inspection

SAMPLE RECORD SHEET

(To be completed by the Water Distribution Inspector / Caretaker and entered into the Log Book along with any accompanying photographs)

DATA RECORDS: LEICHHARDT RIVER DAM (LAKE MOONDARRA DAM WALL) WEEKLY INSPECTION

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SATISFACTORY</th>
<th>DETAILS / COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weather conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Record reservoir water surface level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spillway discharge</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VISUAL INSPECTION

- Crest of dam
- Upstream and downstream faces
- Downstream toe of abutments

GENERAL COMMENTS

Carried out by: ______________________ Signature: ______________________

Date: __/__/__
Data Record – Monthly Inspection

SAMPLE RECORD SHEET
(To be completed by the Water Distribution Inspector / Caretaker and entered into the Log Book along with any accompanying photographs)

DATA RECORDS: LEICHHARDT RIVER DAM (LAKE MOONDARRA DAM WALL) MONTHLY INSPECTION

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SATISFACTORY</th>
<th>DETAILS / COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weather conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Record reservoir water surface level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spillway discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISUAL INSPECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Crest of spillway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Auxiliary spillways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Crest of dam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Upstream and downstream faces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Downstream toe of abutments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Seepage on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Downstream face</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Abutments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Vee-notch flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Downstream of wall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Minor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Changes to normal operating procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Unusual conditions or occurrences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Emergency attendance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Safety and special conditions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL COMMENTS:

Carried out by: ___________________________ Signature: ___________________________

Date: __/__/____

Unless stamped in RED, this is an ‘Uncontrolled Document’
DAM SAFETY EMERGENCY SITUATION REPORT

Photocopy and fill-out after termination of Emergency Situation.
Complete ALL sections that are applicable to the situation.

Dam Name: ___

Dam Location: ___

Date: ___________ Time: _______________________

Weather Conditions: ___

General Description of Emergency Situation: ___

Area(s) of Dam Affected: ___

Extent of Dam Damage: ___

Possible Cause(s): ___

Effect on dam’s operation: ___

Effect on operational capabilities of outlet works: ___

Initial Reservoir Elevation: ___________ Time: ___________

Maximum Reservoir Elevation: ___________ Time: ___________

Final Reservoir Elevation: ___________ Time: ___________

Description of area flooded downstream/damages/injuries/loss of life: ___

Other Data and Comments: ___

__

__

__

Observer’s name and telephone number: ____________________________
Communication Record

<table>
<thead>
<tr>
<th>Date:</th>
<th>Time: AM □ PM □</th>
<th>Author:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication With:</td>
<td>Communication: □ Conversation □ Telephone □</td>
<td></td>
</tr>
<tr>
<td>Subject:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telephone Number Called:</td>
<td>Affiliation:</td>
<td></td>
</tr>
<tr>
<td>Other Pertinent Information:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discussion Summary:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action Item</th>
<th>Action Resolution/Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
<td>5.</td>
</tr>
</tbody>
</table>

Distribution List:

Author's Signature: ____________________

(Print name, then sign.) (Date)

Utilities Water Distribution Department
<table>
<thead>
<tr>
<th>DATE</th>
<th>JANUARY</th>
<th>FEBRUARY</th>
<th>MARCH</th>
<th>APRIL</th>
<th>MAY</th>
<th>JUNE</th>
<th>JULY</th>
<th>AUGUST</th>
<th>SEPTEMBER</th>
<th>OCTOBER</th>
<th>NOVEMBER</th>
<th>DECEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX H STANDARD PHONE, SMS AND EMAIL MESSAGES TO THE IMMEDIATELY AFFECTED DOWNSTREAM RESIDENTS AND OTHERS
ALERT NOTIFICATION FOR – 4.3.1 (LDMG, MIMSC, LJSS)

Dam: Leichhardt River Dam

Event: 4.3.1 Dam spillway overtopping, increased downstream flows expected. Flood at XXXX (XXX below Abutment Crest Level).

Act Level: Alert. Moderate flooding possible.

Notification Updates: 24 hourly.

Refer: www.bom.gov.au and contact Local Emergency Mgt. Group on 47473280 for more details

ALERT NOTIFICATION FOR – 4.3.2 (LDMG, 20kRes, MIMSC, DNRME, MIWB, LJSS)

Dam: Leichhardt River

Event: 4.3.2 Flood at XXXX and (rising / steady / falling).

Act Level: Lean Forward. Moderate flooding expected.

Notification Updates: 8 hourly updates.

Refer: www.bom.gov.au and contact Local Emergency Mgt. Group on 47473280 for more details

ALERT NOTIFICATION FOR – 4.3.3 (LDMG, 20kRes, MIMSC, DNRME, MIWB, LJSS)

Dam: Leichhardt River

Event: 4.3.3 Flood at XXXX and (rising / steady / falling).

Act Level: Stand Up. High level of flooding expected.

Notification Updates: Every 8 hours

Refer: Immediately contact the Local Emergency Mgt. Group on 47473280 for more details

ALERT NOTIFICATION FOR – 4.3.4 (LDMG, 20kRes, MIMSC, DNRME, MIWB, LJSS)

Dam: Leichhardt River

Event: 4.3.4 Flood levels receding.

Act Level: Stand Down. No further updates pending.

Notification Updates: CEM to notify all previously contacted parties of the intent to move activation level to Stand Down.

Refer: www.bom.gov.au and contact Local Emergency Mgt. Group on 47473280 for more details
ALERT NOTIFICATION FOR – 4.4.2 (LDGM, 20kRes, MIMSC, DNRME, MIWB)

Dam: Leichhardt River

Event: 4.4.2 Potential structural integrity issue identified

Act Level: Lean Forward.

Notification Updates: After structural engineer can confirm integrity or 48 hours without further damage.

Refer: Contact the Local Emergency Mgt. Group on 47473280 for more details

ALERT NOTIFICATION FOR – 4.4.3 (Emergency Services, LDMG, MIMSC, 20kRes, DNRME, MIWB)

Dam: Leichhardt River

Event: 4.4.3 – Dam structural condition identified with dam failure potential.

Act Level: Stand Up.

Notification Updates: After structural engineer can confirm integrity or 48 hours without further damage

Refer: **Immediately contact** the Local Emergency Mgt. Group on 47473280 for more details

ALERT NOTIFICATION FOR – 4.5.1 (Emergency Services, MIMSC, 20kRes, DNRME, MIWB)

Dam: Leichhardt River

Event: Object crashing into dam or catchment

Act level: Stand Up.

Notification Updates: Until the emergency response teams can confirm contamination is under control.

Refer: **Immediately contact** Local Emergency Mgt. Group on 47473280 for more details

ALERT NOTIFICATION FOR – 4.5.2 (MIMSC, 20kRes, DNRME, MIWB)

Dam: Leichhardt River

Event: Algae bloom in storage / catchment

Act level: Stand Up.

Notification Updates: Weekly or until an environmental assessment can confirm contamination is not a threat.

Refer: **Immediately contact** Local Emergency Mgt. Group on 47473280 for more details
APPENDIX I PUBLIC ACCESS TO NOTIFICATION LIST VIA INTERNET

Click on Sustainability

Mount Isa Mines is one of the biggest mining operations in Australia. Our business and products play vital roles in our community.
Click here for access to supply personal information to receive emergency notifications.

1. Fill out appropriate fields
2. Click on drop down box and select Lake Moondarra
3. Press Submit